Goto

Collaborating Authors

 Social & Ethical Issues


SLIM: Style-Linguistics Mismatch Model for Generalized Audio Deepfake Detection

Neural Information Processing Systems

Audio deepfake detection (ADD) is crucial to combat the misuse of speech synthesized by generative AI models. Existing ADD models suffer from generalization issues to unseen attacks, with a large performance discrepancy between in-domain and out-of-domain data. Moreover, the black-box nature of existing models limits their use in real-world scenarios, where explanations are required for model decisions. To alleviate these issues, we introduce a new ADD model that explicitly uses the Style-LInguistics Mismatch (SLIM) in fake speech to separate them from real speech. SLIM first employs self-supervised pretraining on only real samples to learn the style-linguistics dependency in the real class. The learned features are then used in complement with standard pretrained acoustic features (e.g., Wav2vec) to learn a classifier on the real and fake classes. When the feature encoders are frozen, SLIM outperforms benchmark methods on out-of-domain datasets while achieving competitive results on in-domain data. The features learned by SLIM allow us to quantify the (mis)match between style and linguistic content in a sample, hence facilitating an explanation of the model decision.


Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics

Neural Information Processing Systems

Explainable AI (XAI) is a rapidly growing domain with a myriad of proposed methods as well as metrics aiming to evaluate their efficacy. However, current studies are often of limited scope, examining only a handful of XAI methods and ignoring underlying design parameters for performance, such as the model architecture or the nature of input data. Moreover, they often rely on one or a few metrics and neglect thorough validation, increasing the risk of selection bias and ignoring discrepancies among metrics. These shortcomings leave practitioners confused about which method to choose for their problem. In response, we introduce LATEC, a large-scale benchmark that critically evaluates 17 prominent XAI methods using 20 distinct metrics.


Poll: Banning state regulation of AI is massively unpopular

Mashable

Federal lawmakers in the Senate are poised to take up the One Big Beautiful Bill Act next week, but a new poll suggests that one of its controversial provisions is clearly unpopular with voters on both sides of the aisle. That measure would ban states from regulating artificial intelligence for a decade. Proponents say that U.S. tech companies won't be able to succeed on the global stage if they're restrained by a patchwork of state laws that address concerns over artificial intelligence, like deepfakes, fraud, and youth safety. But critics argue that a lengthy blanket ban would harm consumers, especially given that Congress has no plan to pass a bill with protections. The new poll asked 1,022 registered voters across the country about their opinion on a state regulatory moratorium, and the results show that American voters largely oppose it.


The State of Data at An Assessment of Development Practices in the and Benchmarks Track

Neural Information Processing Systems

If labels are obtained from elsewhere: documentation discusses where they were obtained from, how they were reused, and how the collected annotations and labels are combined with existing ones. DATA QUALITY 10 Suitability Suitability is a measure of a dataset's Documentation discusses how the dataset Documentation discusses how quality with regards to the purpose is appropriate for the defined purpose.


Characterizing the risk of fairwashing

Neural Information Processing Systems

Fairwashing refers to the risk that an unfair black-box model can be explained by a fairer model through post-hoc explanation manipulation. In this paper, we investigate the capability of fairwashing attacks by analyzing their fidelity-unfairness trade-offs. In particular, we show that fairwashed explanation models can generalize beyond the suing group (i.e., data points that are being explained), meaning that a fairwashed explainer can be used to rationalize subsequent unfair decisions of a black-box model. We also demonstrate that fairwashing attacks can transfer across black-box models, meaning that other black-box models can perform fairwashing without explicitly using their predictions. This generalization and transferability of fairwashing attacks imply that their detection will be difficult in practice. Finally, we propose an approach to quantify the risk of fairwashing, which is based on the computation of the range of the unfairness of high-fidelity explainers.


Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models

Neural Information Processing Systems

Shapley values underlie one of the most popular model-agnostic methods within explainable artificial intelligence. These values are designed to attribute the difference between a model's prediction and an average baseline to the different features used as input to the model. Being based on solid game-theoretic principles, Shapley values uniquely satisfy several desirable properties, which is why they are increasingly used to explain the predictions of possibly complex and highly non-linear machine learning models. Shapley values are well calibrated to a user's intuition when features are independent, but may lead to undesirable, counterintuitive explanations when the independence assumption is violated. In this paper, we propose a novel framework for computing Shapley values that generalizes recent work that aims to circumvent the independence assumption. By employing Pearl's do-calculus, we show how these'causal' Shapley values can be derived for general causal graphs without sacrificing any of their desirable properties. Moreover, causal Shapley values enable us to separate the contribution of direct and indirect effects. We provide a practical implementation for computing causal Shapley values based on causal chain graphs when only partial information is available and illustrate their utility on a real-world example.




Uncalibrated Models Can Improve Human-AI Collaboration

Neural Information Processing Systems

In many practical applications of AI, an AI model is used as a decision aid for human users. The AI provides advice that a human (sometimes) incorporates into their decision-making process. The AI advice is often presented with some measure of "confidence" that the human can use to calibrate how much they depend on or trust the advice. In this paper, we present an initial exploration that suggests showing AI models as more confident than they actually are, even when the original AI is well-calibrated, can improve human-AI performance (measured as the accuracy and confidence of the human's final prediction after seeing the AI advice). We first train a model to predict human incorporation of AI advice using data from thousands of human-AI interactions. This enables us to explicitly estimate how to transform the AI's prediction confidence, making the AI uncalibrated, in order to improve the final human prediction.


SHAP-IQ: Unified Approximation of any-order Shapley Interactions

Neural Information Processing Systems

Predominately in explainable artificial intelligence (XAI) research, the Shapley value (SV) is applied to determine feature attributions for any black box model. Shapley interaction indices extend the SV to define any-order feature interactions. Defining a unique Shapley interaction index is an open research question and, so far, three definitions have been proposed, which differ by their choice of axioms. Moreover, each definition requires a specific approximation technique. Here, we propose SHAPley Interaction Quantification (SHAP-IQ), an efficient sampling-based approximator to compute Shapley interactions for arbitrary cardinal interaction indices (CII), i.e. interaction indices that satisfy the linearity, symmetry and dummy axiom. SHAP-IQ is based on a novel representation and, in contrast to existing methods, we provide theoretical guarantees for its approximation quality, as well as estimates for the variance of the point estimates. For the special case of SV, our approach reveals a novel representation of the SV and corresponds to Unbiased KernelSHAP with a greatly simplified calculation. We illustrate the computational efficiency and effectiveness by explaining language, image classification and high-dimensional synthetic models.