Goto

Collaborating Authors

 Industry


Time Dependent Adaptive Neural Networks

Neural Information Processing Systems

Fernando J. Pineda Center for Microelectronics Technology Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 ABSTRACT A comparison of algorithms that minimize error functions to train the trajectories of recurrent networks, reveals how complexity is traded off for causality. These algorithms are also related to time-independent fonnalisms. It is suggested that causal and scalable algorithms are possible when the activation dynamics of adaptive neurons is fast compared to the behavior to be learned. Standard continuous-time recurrent backpropagation is used in an example. 1 INTRODUCTION Training the time dependent behavior of a neural network model involves the minimization of a function that measures the difference between an actual trajectory and a desired trajectory. The standard method of accomplishing this minimization is to calculate the gradient of an error function with respect to the weights of the system and then to use the gradient in a minimization algorithm (e.g.


Reading a Neural Code

Neural Information Processing Systems

Traditional methods of studying neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task - decoding short segments of a spike train to extract information about an unknown, time-varying stimulus. Here we present strategies for characterizing the neural code from the point of view of the organism, culminating in algorithms for real-time stimulus reconstruction based on a single sample of the spike train. These methods are applied to the design and analysis of experiments on an identified movement-sensitive neuron in the fly visual system. As far as we know this is the first instance in which a direct "reading" of the neural code has been accomplished.



Using a Translation-Invariant Neural Network to Diagnose Heart Arrhythmia

Neural Information Processing Systems

Distinctive electrocardiogram (EeG) patterns are created when the heart is beating normally and when a dangerous arrhythmia is present. Some devices which monitor the EeG and react to arrhythmias parameterize the ECG signal and make a diagnosis based on the parameters. The author discusses the use of a neural network to classify the EeG signals directly.


Can Simple Cells Learn Curves? A Hebbian Model in a Structured Environment

Neural Information Processing Systems

In the mammalian visual cortex, orientation-selective'simple cells' which detect straight lines may be adapted to detect curved lines instead. We test a biologically plausible, Hebbian, single-neuron model, which learns oriented receptive fields upon exposure to unstructured (noise) input and maintains orientation selectivity upon exposure to edges or bars of all orientations and positions. This model can also learn arc-shaped receptive fields upon exposure to an environment of only circular rings. Thus, new experiments which try to induce an abnormal (curved) receptive field may provide insight into the plasticity of simple cells. The model suggests that exposing cells to only a single spatial frequency may induce more striking spatial frequency and orientation dependent effects than heretofore observed.


Reading a Neural Code

Neural Information Processing Systems

Traditional methods of studying neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task - decoding short segments of a spike train to extract information about an unknown, time-varying stimulus. Here we present strategies for characterizing the neural code from the point of view of the organism, culminating in algorithms for real-time stimulus reconstruction based on a single sample of the spike train. These methods are applied to the design and analysis of experiments on an identified movement-sensitive neuron in the fly visual system. As far as we know this is the first instance in which a direct "reading" of the neural code has been accomplished.


Dynamic Behavior of Constained Back-Propagation Networks

Neural Information Processing Systems

It is generally admitted that generalization performance of back-propagation networks (Rumelhart, Hinton & Williams, 1986) will depend on the relative size ofthe training data and of the trained network. By analogy to curve-fitting and for theoretical considerations, the generalization performance of the network should decrease as the size of the network and the associated number of degrees of freedom increase (Rumelhart, 1987; Denker et al., 1987; Hanson & Pratt, 1989). This paper examines the dynamics of the standard back-propagation algorithm (BP) and of a constrained back-propagation variation (CBP), designed to adapt the size of the network to the training data base. The performance, learning dynamics and the representations resulting from the two algorithms are compared.


Predicting Weather Using a Genetic Memory: A Combination of Kanerva's Sparse Distributed Memory with Holland's Genetic Algorithms

Neural Information Processing Systems

Kanerva's sparse distributed memory (SDM) is an associative-memory model based on the mathematical properties of high-dimensional binary address spaces. Holland's genetic algorithms are a search technique for high-dimensional spaces inspired by evolutionary processes of DNA. "Genetic Memory" is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. For example, when presented with raw weather station data, the Genetic Memory discovers specific features in the weather data which correlate well with upcoming rain, and reconfigures the memory to utilize this information effectively. This architecture is designed to maximize the ability of the system to scale-up to handle real-world problems.


A Reconfigurable Analog VLSI Neural Network Chip

Neural Information Processing Systems

The distributed-neuron synapses are arranged in blocks of 16, which we call '4 x 4 tiles'. Switch matrices are interleaved between each of these tiles to provide programmability of interconnections. With a small area overhead (15 %), the 1024 units of the network can be rearranged in various configurations. Some of the possible configurations are, a 12-32-12 network, a 16-12-12-16 network, two 12-32 networks etc. (the numbers separated by dashes indicate the number of units per layer, including the input layer). Weights are stored in analog form on MaS capacitors.


The Effect of Catecholamines on Performance: From Unit to System Behavior

Neural Information Processing Systems

We present a model of catecholamine effects in a network of neural-like elements. We argue that changes in the responsivity of individual elements do not affect their ability to detect a signal and ignore noise. However. the same changes in cell responsivity in a network of such elements do improve the signal detection performance of the network as a whole. We show how this result can be used in a computer simulation of behavior to account for the effect of eNS stimulants on the signal detection performance of human subjects.