Plotting

 Industry


A four neuron circuit accounts for change sensitive inhibition in salamander retina

Neural Information Processing Systems

In salamander retina, the response of On-Off ganglion cells to a central flash is reduced by movement in the receptive field surround. Through computer simulation of a 2-D model which takes into account their anatomical and physiological properties, we show that interactions between four neuron types (two bipolar and two amacrine) may be responsible for the generation and lateral conductance of this change sensitive inhibition. The model shows that the four neuron circuit can account for previously observed movement sensitive reductions in ganglion cell sensitivity and allows visualization and prediction of the spatiotemporal pattern of activity in change sensitive retinal cells.


A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn

Neural Information Processing Systems

In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributed representations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained by known structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.



Further Studies of a Model for the Development and Regeneration of Eye-Brain Maps

Neural Information Processing Systems

We describe a computational model of the development and regeneration ofspecific eye-brain circuits. The model comprises a self-organizing map-forming network which uses local Hebb rules, constrained by (genetically determined) molecular markers. Various simulations of the development and regeneration of eye-brain maps in fish and frogs are described, in particular successful simulations of experiments by Schmidt-Cicerone-Easter; Meyer; and Yoon. 1 INTRODUCTION In a previous paper published in last years proceedings (Cowan & Friedman 1990) we outlined a new computational model for the development and regeneration of eye-brain maps. We indicated that such a model can simulate the results of a number of the more complicated surgical manipulations carried out on the visual pathways of goldfish and frogs. In this paper we describe in more detail some of these experiments, and our simulations of them.


Cholinergic Modulation May Enhance Cortical Associative Memory Function

Neural Information Processing Systems

James M. Bower Computation and Neural Systems Caltech 216-76 Pasadena, CA 91125 Combining neuropharmacological experiments with computational modeling, wehave shown that cholinergic modulation may enhance associative memory function in piriform (olfactory) cortex. We have shown that the acetylcholine analogue carbachol selectively suppresses synaptic transmission betweencells within piriform cortex, while leaving input connections unaffected. When tested in a computational model of piriform cortex, this selective suppression, applied during learning, enhances associative memory performance.


VLSI Implementation of TInMANN

Neural Information Processing Systems

A massively parallel, all-digital, stochastic architecture - TlnMAN N - is described which performs competitive and Kohonen types of learning. A VLSI design is shown for a TlnMANN neuron which fits within a small, inexpensive MOSIS TinyChip frame, yet which can be used to build larger networks of several hundred neurons. The neuron operates at a speed of 15 MHz which allows the network to process 290,000 training examples per second. Use of level sensitive scan logic provides the chip with 100% fault coverage, permitting very reliable neural systems to be built.


A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn

Neural Information Processing Systems

In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributedrepresentations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained byknown structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.



Real-time autonomous robot navigation using VLSI neural networks

Neural Information Processing Systems

There have been very few demonstrations ofthe application ofVLSI neural networks to real world problems. Yet there are many signal processing, pattern recognition or optimization problems where a large number of competing hypotheses need to be explored in parallel, most often in real time. The massive parallelism of VLSI neural network devices, with one multiplier circuit per synapse, is ideally suited to such problems. In this paper, we present preliminary results from our design for a real time robot navigation system based on VLSI neural network modules. This is a - Also: RSRE, Great Malvern, Worcester, WR14 3PS 422 Real-time Autonomous Robot Navigation Using VLSI Neural Networks 423 real world problem which has not been fully solved by traditional AI methods; even when partial solutions have been proposed and implemented, these have required vast computational resources, usually remote from the robot and linked to it via an umbilical cord. 2 OVERVIEW The aim of our work is to develop an autonomous vehicle capable of real-time navigation, including obstacle avoidance, in a known indoor environment.