Not enough data to create a plot.
Try a different view from the menu above.
Retail
Effective Bayesian Modeling of Groups of Related Count Time Series
Time series of counts arise in a variety of forecasting applications, for which traditional models are generally inappropriate. This paper introduces a hierarchical Bayesian formulation applicable to count time series that can easily account for explanatory variables and share statistical strength across groups of related time series. We derive an efficient approximate inference technique, and illustrate its performance on a number of datasets from supply chain planning.
Towards the Development of a Simulator for Investigating the Impact of People Management Practices on Retail Performance
Siebers, Peer-Olaf, Aickelin, Uwe, Celia, Helen, Clegg, Chris
Often models for understanding the impact of management practices on retail performance are developed under the assumption of stability, equilibrium and linearity, whereas retail operations are considered in reality to be dynamic, non-linear and complex. Alternatively, discrete event and agent-based modelling are approaches that allow the development of simulation models of heterogeneous non-equilibrium systems for testing out different scenarios. When developing simulation models one has to abstract and simplify from the real world, which means that one has to try and capture the 'essence' of the system required for developing a representation of the mechanisms that drive the progression in the real system. Simulation models can be developed at different levels of abstraction. To know the appropriate level of abstraction for a specific application is often more of an art than a science. We have developed a retail branch simulation model to investigate which level of model accuracy is required for such a model to obtain meaningful results for practitioners.
Investigating Output Accuracy for a Discrete Event Simulation Model and an Agent Based Simulation Model
Majid, Mazlina Abdul, Aickelin, Uwe, Siebers, Peer-Olaf
In this paper, we investigate output accuracy for a Discrete Event Simulation (DES) model and Agent Based Simulation (ABS) model. The purpose of this investigation is to find out which of these simulation techniques is the best one for modelling human reactive behaviour in the retail sector. In order to study the output accuracy in both models, we have carried out a validation experiment in which we compared the results from our simulation models to the performance of a real system. Our experiment was carried out using a large UK department store as a case study. We had to determine an efficient implementation of management policy in the store's fitting room using DES and ABS. Overall, we have found that both simulation models were a good representation of the real system when modelling human reactive behaviour.
Multi-Agent Simulation and Management Practices
Siebers, Peer-Olaf, Aickelin, Uwe, Celia, Helen, Clegg, Chris
Intelligent agents offer a new and exciting way of understanding the world of work. Agent-Based Simulation (ABS), one way of using intelligent agents, carries great potential for progressing our understanding of management practices and how they link to retail performance. We have developed simulation models based on research by a multi-disciplinary team of economists, work psychologists and computer scientists. We will discuss our experiences of implementing these concepts working with a well-known retail department store. There is no doubt that management practices are linked to the performance of an organisation (Reynolds et al., 2005; Wall & Wood, 2005). Best practices have been developed, but when it comes down to the actual application of these guidelines considerable ambiguity remains regarding their effectiveness within particular contexts (Siebers et al., forthcoming a). Most Operational Research (OR) methods can only be used as analysis tools once management practices have been implemented. Often they are not very useful for giving answers to speculative 'what-if' questions, particularly when one is interested in the development of the system over time rather than just the state of the system at a certain point in time. Simulation can be used to analyse the operation of dynamic and stochastic systems. ABS is particularly useful when complex interactions between system entities exist, such as autonomous decision making or negotiation. In an ABS model the researcher explicitly describes the decision process of simulated actors at the micro level. Structures emerge at the macro level as a result of the actions of the agents and their interactions with other agents and the environment. 3 We will show how ABS experiments can deal with testing and optimising management practices such as training, empowerment or teamwork. Hence, questions such as "will staff setting their own break times improve performance?" can be investigated.
Comparing Simulation Output Accuracy of Discrete Event and Agent Based Models: A Quantitive Approach
Majid, Mazlina Abdul, Aickelin, Uwe, Siebers, Peer-Olaf
In our research we investigate the output accuracy of discrete event simulation models and agent based simulation models when studying human centric complex systems. In this paper we focus on human reactive behaviour as it is possible in both modelling approaches to implement human reactive behaviour in the model by using standard methods. As a case study we have chosen the retail sector, and here in particular the operations of the fitting room in the women wear department of a large UK department store. In our case study we looked at ways of determining the efficiency of implementing new management policies for the fitting room operation through modelling the reactive behaviour of staff and customers of the department. First, we have carried out a validation experiment in which we compared the results from our models to the performance of the real system. This experiment also allowed us to establish differences in output accuracy between the two modelling methids. In a second step a multi-scenario experiment was carried out to study the behaviour of the models when they are used for the purpose of operational improvement. Overall we have found that for our case study example both discrete event simulation and agent based simulation have the same potential to support the investigation into the efficiency of implementing new management policies.
Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses
Wurman, Peter R. (North Carolina State University) | D' (ETH Zurich) | Andrea, Raffaello (Kiva Systems) | Mountz, Mick
The Kiva warehouse-management system creates a new paradigm for pick-pack-and-ship warehouses that significantly improves worker productivity. The Kiva system uses movable storage shelves that can be lifted by small, autonomous robots. By bringing the product to the worker, productivity is increased by a factor of two or more, while simultaneously improving accountability and flexibility. A Kiva installation for a large distribution center may require 500 or more vehicles. As such, the Kiva system represents the first commercially available, large-scale autonomous robot system. The first permanent installation of a Kiva system was deployed in the summer of 2006.
Bayesian Predictive Profiles With Applications to Retail Transaction Data
Cadez, Igor V., Smyth, Padhraic
Massive transaction data sets are recorded in a routine manner in telecommunications, retail commerce, and Web site management. In this paper we address the problem of inferring predictive individual profilesfrom such historical transaction data. We describe a generative mixture model for count data and use an an approximate Bayesian estimation framework that effectively combines anindividual's specific history with more general population patterns. We use a large real-world retail transaction data set to illustrate how these profiles consistently outperform non-mixture and non-Bayesian techniques in predicting customer behavior in out-of-sample data.
Bayesian Predictive Profiles With Applications to Retail Transaction Data
Cadez, Igor V., Smyth, Padhraic
Massive transaction data sets are recorded in a routine manner in telecommunications, retail commerce, and Web site management. In this paper we address the problem of inferring predictive individual profiles from such historical transaction data. We describe a generative mixture model for count data and use an an approximate Bayesian estimation framework that effectively combines an individual's specific history with more general population patterns. We use a large real-world retail transaction data set to illustrate how these profiles consistently outperform non-mixture and non-Bayesian techniques in predicting customer behavior in out-of-sample data.
Bayesian Predictive Profiles With Applications to Retail Transaction Data
Cadez, Igor V., Smyth, Padhraic
Massive transaction data sets are recorded in a routine manner in telecommunications, retail commerce, and Web site management. In this paper we address the problem of inferring predictive individual profiles from such historical transaction data. We describe a generative mixture model for count data and use an an approximate Bayesian estimation framework that effectively combines an individual's specific history with more general population patterns. We use a large real-world retail transaction data set to illustrate how these profiles consistently outperform non-mixture and non-Bayesian techniques in predicting customer behavior in out-of-sample data.
Applied AI News
The system generates traffic flow measurements that enable traffic operations centers to monitor traffic movement and better respond to accidents Wal-Mart Stores (Bentonville, Ark.) Tektronix (Wilsonville, Ore.), a and congestion. This system, which manage its automated storage and models for its computer-assisted includes fuzzy logic and neural network retrieval system. The systems will Mexico), a producer of metals, has Calif.) is using visualization and digital monitor satellite signals in near real implemented an intelligent system to prototyping software for vehicle time, alerting operators to out-of-tolerance improve its zinc yield. The advanced design and manufacturing within its conditions and the presence of control expert system provides operator new concurrent engineering system. The application was developed and virtual manufacturing.