Not enough data to create a plot.
Try a different view from the menu above.
Materials
A Recipe for Charge Density Prediction 2,3
In density functional theory, the charge density is the core attribute of atomic systems from which all chemical properties can be derived. Machine learning methods are promising as a means of significantly accelerating charge density predictions, yet existing approaches either lack accuracy or scalability. We propose a recipe that can achieve both. In particular, we identify three key ingredients: (1) representing the charge density with atomic and virtual orbitals (spherical fields centered at atom/virtual coordinates); (2) using expressive and learnable orbital basis sets (basis functions for the spherical fields); and (3) using a highcapacity equivariant neural network architecture. Our method achieves state-ofthe-art accuracy while being more than an order of magnitude faster than existing methods. Furthermore, our method enables flexible efficiency-accuracy trade-offs by adjusting the model and/or basis set sizes.
T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation
Despite the stunning ability to generate high-quality images by recent text-toimage models, current approaches often struggle to effectively compose objects with different attributes and relationships into a complex and coherent scene. We propose T2I-CompBench, a comprehensive benchmark for open-world compositional text-to-image generation, consisting of 6,000 compositional text prompts from 3 categories (attribute binding, object relationships, and complex compositions) and 6 sub-categories (color binding, shape binding, texture binding, spatial relationships, non-spatial relationships, and complex compositions). We further propose several evaluation metrics specifically designed to evaluate compositional text-to-image generation and explore the potential and limitations of multimodal LLMs for evaluation. We introduce a new approach, Generative mOdel finetuning with Reward-driven Sample selection (GORS), to boost the compositional text-to-image generation abilities of pretrained text-to-image models. Extensive experiments and evaluations are conducted to benchmark previous methods on T2I-CompBench, and to validate the effectiveness of our proposed evaluation metrics and GORS approach.
GAUCHE: A Library for Gaussian Processes in Chemistry 2
We introduce GAUCHE, an open-source library for GAUssian processes in CHEmistry. Gaussian processes have long been a cornerstone of probabilistic machine learning, affording particular advantages for uncertainty quantification and Bayesian optimisation. Extending Gaussian processes to molecular representations, however, necessitates kernels defined over structured inputs such as graphs, strings and bit vectors. By providing such kernels in a modular, robust and easy-to-use framework, we seek to enable expert chemists and materials scientists to make use of state-of-the-art black-box optimization techniques. Motivated by scenarios frequently encountered in practice, we showcase applications for GAUCHE in molecular discovery, chemical reaction optimisation and protein design.
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Artificial intelligence for scientific discovery has recently generated significant interest within the machine learning and scientific communities, particularly in the domains of chemistry, biology, and material discovery. For these scientific problems, molecules serve as the fundamental building blocks, and machine learning has emerged as a highly effective and powerful tool for modeling their geometric structures. Nevertheless, due to the rapidly evolving process of the field and the knowledge gap between science (e.g., physics, chemistry, & biology) and machine learning communities, a benchmarking study on geometrical representation for such data has not been conducted. To address such an issue, in this paper, we first provide a unified view of the current symmetry-informed geometric methods, classifying them into three main categories: invariance, equivariance with spherical frame basis, and equivariance with vector frame basis. Then we propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies. Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 52 diverse tasks, including small molecules, proteins, and crystalline materials. We hope that Geom3D can, on the one hand, eliminate barriers for machine learning researchers interested in exploring scientific problems; and, on the other hand, provide valuable guidance for researchers in computational chemistry, structural biology, and materials science, aiding in the informed selection of representation techniques for specific applications. The source code is available on the GitHub repository.
Amnesia as a Catalyst for Enhancing Black Box Pixel Attacks in Image Classification and Object Detection
It is well known that query-based attacks tend to have relatively higher success rates in adversarial black-box attacks. While research on black-box attacks is actively being conducted, relatively few studies have focused on pixel attacks that target only a limited number of pixels. In image classification, query-based pixel attacks often rely on patches, which heavily depend on randomness and neglect the fact that scattered pixels are more suitable for adversarial attacks. Moreover, to the best of our knowledge, query-based pixel attacks have not been explored in the field of object detection. To address these issues, we propose a novel pixel-based black-box attack called Remember and Forget Pixel Attack using Reinforcement Learning(RFPAR), consisting of two main components: the Remember and Forget processes.