Plotting

 Information Technology


TradeMaster Appendix

Neural Information Processing Systems

Is there a label or target associated with each instance? No, there is no label or target associated with each instance as our focus is not supervised learning settings. Is any information missing from individual instances? Yes, it is common to have missing values in financial datasets. We provide scripts to preprocess and conduct data imputation with diffusion models [26]. Are relationships between individual instances made explicit?


3D Gaussian Splatting as Markov Chain Monte Carlo

Neural Information Processing Systems

While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene--in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) update by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.


Robust Fine-tuning of Zero-shot Models via Variance Reduction

Neural Information Processing Systems

When fine-tuning zero-shot models like CLIP, our desideratum is for the fine-tuned model to excel in both in-distribution (ID) and out-of-distribution (OOD). Recently, ensemble-based models (ESM) have been shown to offer significant robustness improvement, while preserving high ID accuracy. However, our study finds that ESMs do not solve the ID-OOD trade-offs: they achieve peak performance for ID and OOD accuracy at different mixing coefficients. When optimized for OOD accuracy, the ensemble model exhibits a noticeable decline in ID accuracy, and vice versa. In contrast, we propose a sample-wise ensembling technique that can simultaneously attain the best ID and OOD accuracy without the trade-offs.


Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias Yue Yu

Neural Information Processing Systems

Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks. While previous research has explored different approaches to training models using generated data, they generally rely on simple class-conditional prompts, which may limit the diversity of the generated data and inherit systematic biases of LLM. Thus, we investigate training data generation with diversely attributed prompts (e.g., specifying attributes like length and style), which have the potential to yield diverse and attributed generated data. Our investigation focuses on datasets with high cardinality and diverse domains, wherein we demonstrate that attributed prompts outperform simple class-conditional prompts in terms of the resulting model's performance.


Normal-GS: 3D Gaussian Splatting with Normal-Involved Rendering

Neural Information Processing Systems

Rendering and reconstruction are long-standing topics in computer vision and graphics. Achieving both high rendering quality and accurate geometry is a challenge. Recent advancements in 3D Gaussian Splatting (3DGS) have enabled high-fidelity novel view synthesis at real-time speeds. However, the noisy and discrete nature of 3D Gaussian primitives hinders accurate surface estimation. Previous attempts to regularize 3D Gaussian normals often degrade rendering quality due to the fundamental disconnect between normal vectors and the rendering pipeline in 3DGS-based methods.


Confident Natural Policy Gradient for Local Planning in q

Neural Information Processing Systems

The constrained Markov decision process (CMDP) framework emerges as an important reinforcement learning approach for imposing safety or other critical objectives while maximizing cumulative reward. However, the current understanding of how to learn efficiently in a CMDP environment with a potentially infinite number of states remains under investigation, particularly when function approximation is applied to the value functions.


What to Say and When to Say it: Live Fitness Coaching as a Testbed for Situated Interaction Sunny Panchal 1 Guillaume Berger 1 Antoine Mercier 1

Neural Information Processing Systems

Vision-language models have shown impressive progress in recent years. However, existing models are largely limited to turn-based interactions, where each turn must be stepped (i.e., prompted) by the user. Open-ended, asynchronous interactions, where an AI model may proactively deliver timely responses or feedback based on the unfolding situation in real-time, are an open challenge.


GTA: A Benchmark for General Tool Agents Jize Wang 1,2 Zerun Ma2 Yining Li2

Neural Information Processing Systems

Significant focus has been placed on integrating large language models (LLMs) with various tools in developing general-purpose agents. This poses a challenge to LLMs' tool-use capabilities. However, there are evident gaps between existing tool-use evaluations and real-world scenarios. Current evaluations often use AIgenerated queries, single-step tasks, dummy tools, and text-only interactions, failing to effectively reveal the agents' real-world problem-solving abilities. To address this, we propose GTA, a benchmark for General Tool Agents, featuring three main aspects: (i) Real user queries: human-written queries with simple real-world objectives but implicit tool-use, requiring the LLM to reason the suitable tools and plan the solution steps.


Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning

Neural Information Processing Systems

As a marriage between offline RL and meta-RL, the advent of offline metareinforcement learning (OMRL) has shown great promise in enabling RL agents to multi-task and quickly adapt while acquiring knowledge safely. Among which, context-based OMRL (COMRL) as a popular paradigm, aims to learn a universal policy conditioned on effective task representations. In this work, by examining several key milestones in the field of COMRL, we propose to integrate these seemingly independent methodologies into a unified framework. Most importantly, we show that the pre-existing COMRL algorithms are essentially optimizing the same mutual information objective between the task variable M and its latent representation Z by implementing various approximate bounds. Such theoretical insight offers ample design freedom for novel algorithms. As demonstrations, we propose a supervised and a self-supervised implementation of I(Z; M), and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks, context shift scenarios, data qualities and deep learning architectures. This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning. Given its generality, we envision our framework as a promising offline pre-training paradigm of foundation models for decision making.


IR-CM: The Fast and General-purpose Image Restoration Method Based on Consistency Model

Neural Information Processing Systems

This paper proposes a fast and general-purpose image restoration method. The key idea is to achieve few-step or even one-step inference by conducting consistency distilling or training on a specific mean-reverting stochastic differential equations. Furthermore, based on this, we propose a novel linear-nonlinear decoupling training strategy, significantly enhancing training effectiveness and surpassing consistency distillation on inference performance. This allows our method to be independent of any pre-trained checkpoint, enabling it to serve as an effective standalone imageto-image transformation model. Finally, to avoid trivial solutions and stabilize model training, we introduce a simple origin-guided loss. To validate the effectiveness of our proposed method, we conducted experiments on tasks including image deraining, denoising, deblurring, and low-light image enhancement. The experiments show that our method achieves highly competitive results with only one-step inference. And with just two-step inference, it can achieve state-of-the-art performance in low-light image enhancement. Furthermore, a number of ablation experiments demonstrate the effectiveness of the proposed training strategy.