Government
Intelligent Agents for Interactive Simulation Environments
Tambe, Milind, Johnson, W. Lewis, Jones, Randolph M., Koss, Frank, Laird, John E., Rosenbloom, Paul S., Schwamb, Karl
Interactive simulation environments constitute one of today's promising emerging technologies, with applications in areas such as education, manufacturing, entertainment, and training. These environments are also rich domains for building and investigating intelligent automated agents, with requirements for the integration of a variety of agent capabilities but without the costs and demands of low-level perceptual processing or robotic control. Our project is aimed at developing humanlike, intelligent agents that can interact with each other, as well as with humans, in such virtual environments. Our current target is intelligent automated pilots for battlefield-simulation environments. These dynamic, interactive, multiagent environments pose interesting challenges for research on specialized agent capabilities as well as on the integration of these capabilities in the development of "complete" pilot agents. We are addressing these challenges through development of a pilot agent, called TacAir-Soar, within the Soar architecture. This article provides an overview of this domain and project by analyzing the challenges that automated pilots face in battlefield simulations, describing how TacAir-Soar is successfully able to address many of them -- TacAir-Soar pilots have already successfully participated in constrained air-combat simulations against expert human pilots -- and discussing the issues involved in resolving the remaining research challenges.
Applied AI News
Hughes Missile Systems (Tucson, Lear Astronics (Santa Monica and to "enter" the surgical area, as if they Ariz.) is providing intelligent character Ontario, Calif.) is combining neural were actually there. Cross/Blue Shield (New York, N.Y.) to enhance its Autonomous Landing FuziWare (Knoxville, Tenn.), a developer expedite the processing of medical Guidance (ALG) system. Empire will install the is using a neural network-based tools for business and engineering ICRs at its Yorktown Heights and massively parallel coprocessor for solutions, has received a patent from Manhattan offices, where they will be real-time image processing in the the U.S. Department of Commerce ALG system, which enables commercial Patent and Trademark Office for its used to process about 10,000 documents and military aircraft pilots to FuziCalc product, a fuzzy spreadsheet per day. The claims in the patent cover various fuzzy number The Boston Museum of Fine Arts Researchers at Georgia Tech (Atlanta, interface elements as well as the (Boston, Mass.) has developed a virtual Ga.) have created intelligent agent entire fuzzy number processing system. TOAK navigates and surgical equipment, has implemented through multiple networks and a virtual reality application a complex 3D model derived from across diverse computer systems to for technical design presentation.
Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm
This paper introduces ICET, a new algorithm for cost-sensitive classification. ICET uses a genetic algorithm to evolve a population of biases for a decision tree induction algorithm. The fitness function of the genetic algorithm is the average cost of classification when using the decision tree, including both the costs of tests (features, measurements) and the costs of classification errors. ICET is compared here with three other algorithms for cost-sensitive classification - EG2, CS-ID3, and IDX - and also with C4.5, which classifies without regard to cost. The five algorithms are evaluated empirically on five real-world medical datasets. Three sets of experiments are performed. The first set examines the baseline performance of the five algorithms on the five datasets and establishes that ICET performs significantly better than its competitors. The second set tests the robustness of ICET under a variety of conditions and shows that ICET maintains its advantage. The third set looks at ICET's search in bias space and discovers a way to improve the search.
Segmental Neural Net Optimization for Continuous Speech Recognition
Zhao, Ying, Schwartz, Richard, Makhoul, John, Zavaliagkos, George
Previously, we had developed the concept of a Segmental Neural Net (SNN) for phonetic modeling in continuous speech recognition (CSR). This kind of neural networktechnology advanced the state-of-the-art of large-vocabulary CSR, which employs Hidden Marlcov Models (HMM), for the ARPA 1oo0-word Resource Managementcorpus. More Recently, we started porting the neural net system to a larger, more challenging corpus - the ARPA 20,Ooo-word Wall Street Journal (WSJ) corpus. During the porting, we explored the following research directions to refine the system: i) training context-dependent models with a regularization method;ii) training SNN with projection pursuit; and ii) combining different models into a hybrid system. When tested on both a development set and an independent test set, the resulting neural net system alone yielded a perfonnance atthe level of the HMM system, and the hybrid SNN/HMM system achieved a consistent 10-15% word error reduction over the HMM system. This paper describes our hybrid system, with emphasis on the optimization methods employed.
Clustering with a Domain-Specific Distance Measure
Gold, Steven, Mjolsness, Eric, Rangarajan, Anand
The distance measure and learning problem are formally described as nested objective functions. We derive an efficient algorithm by using optimization techniques that allow us to divide up the objective function into parts which may be minimized in distinct phases. The algorithm has accurately recreated 10 prototypes from a randomly generated sample database of 100 images consisting of 20 points each in 120 experiments. Finally, by incorporating permutation invariance in our distance measure, we have a technique that we may be able to apply to the clustering of graphs. Our goal is to develop measures which will enable the learning of objects with shape or structure. Acknowledgements This work has been supported by AFOSR grant F49620-92-J-0465 and ONR/DARPA grant N00014-92-J-4048.
Clustering with a Domain-Specific Distance Measure
Gold, Steven, Mjolsness, Eric, Rangarajan, Anand
The distance measure and learning problem are formally described as nested objective functions. We derive an efficient algorithm by using optimization techniques that allow us to divide up the objective function into parts which may be minimized in distinct phases. The algorithm has accurately recreated 10 prototypes from a randomly generated sample database of 100 images consisting of 20 points each in 120 experiments. Finally, by incorporating permutation invariance in our distance measure, we have a technique that we may be able to apply to the clustering of graphs. Our goal is to develop measures which will enable the learning of objects with shape or structure. Acknowledgements This work has been supported by AFOSR grant F49620-92-J-0465 and ONR/DARPA grant N00014-92-J-4048.
Recovering a Feed-Forward Net From Its Output
Fefferman, Charles, Markel, Scott
We study feed-forward nets with arbitrarily many layers, using the standard sigmoid,tanh x. Aside from technicalities, our theorems are: 1. Complete knowledge of the output of a neural net for arbitrary inputs uniquely specifies the architecture, weights and thresholds; and 2. There are only finitely many critical points on the error surface for a generic training problem. Neural nets were originally introduced as highly simplified models of the nervous system. Today they are widely used in technology and studied theoretically by scientists from several disciplines. However, they remain little understood.
Postal Address Block Location Using a Convolutional Locator Network
This paper describes the use of a convolutional neural network to perform address block location on machine-printed mail pieces. Locating the address block is a difficult object recognition problem because there is often a large amount of extraneous printing on a mail piece and because address blocks vary dramatically in size and shape. We used a convolutional locator network with four outputs, each trained to find a different corner of the address block. A simple set of rules was used to generate ABL candidates from the network output. The system performs very well: when allowed five guesses, the network will tightly bound the address delivery information in 98.2% of the cases. 1 INTRODUCTION The U.S. Postal Service delivers about 350 million mail pieces a day.
Fast Non-Linear Dimension Reduction
Kambhatla, Nanda, Leen, Todd K.
We propose a new distance measure which is optimal for the task of local PCA. Our results with speech and image data indicate that the nonlinear techniques provide more accurate encodings than PCA. Our local linear algorithm produces more accurate encodings (except for one simulation with image data), and trains much faster than five layer auto-associative networks. Acknowledgments This work was supported by grants from the Air Force Office of Scientific Research (F49620-93-1-0253) and Electric Power Research Institute (RP8015-2). The authors are grateful to Gary Cottrell and David DeMers for providing their image database and clarifying their experimental results. We also thank our colleagues in the Center for Spoken Language Understanding at OGI for providing speech data.
Clustering with a Domain-Specific Distance Measure
Gold, Steven, Mjolsness, Eric, Rangarajan, Anand
Critical features of a domain (such as invariance under translation, rotation, and permu- Clustering with a Domain-Specific Distance Measure 103 tation) are captured within the clustering procedure, rather than reflected in the properties of feature sets created prior to clustering. The distance measure and learning problem are formally described as nested objective functions. We derive an efficient algorithm by using optimization techniques that allow us to divide up the objective function into parts which may be minimized in distinct phases. The algorithm has accurately recreated 10 prototypes from a randomly generated sample database of 100 images consisting of 20 points each in 120 experiments. Finally, by incorporating permutation invariance in our distance measure, we have a technique that we may be able to apply to the clustering of graphs. Our goal is to develop measures which will enable the learning of objects with shape or structure. Acknowledgements This work has been supported by AFOSR grant F49620-92-J-0465 and ONR/DARPA grant N00014-92-J-4048.