Not enough data to create a plot.
Try a different view from the menu above.
Government
A Massively Parallel Self-Tuning Context-Free Parser
ABSTRACT The Parsing and Learning System(PALS) is a massively parallel self-tuning context-free parser. It is capable of parsing sentences of unbounded length mainly due to its parse-tree representation scheme. The system is capable of improving its parsing performance through the presentation of training examples. INTRODUCTION Recent PDP research[Rumelhart et al.- 1986; Feldman and Ballard, 1982; Lippmann, 1987] involving natural language processtng[Fanty, 1988; Selman, 1985; Waltz and Pollack, 1985] have unrealistically restricted sentences to a fixed length. A solution to this problem was presented in the system CONPARSE[Charniak and Santos.
Neural Network Recognizer for Hand-Written Zip Code Digits
Denker, John S., Gardner, W. R., Graf, Hans Peter, Henderson, Donnie, Howard, R. E., Hubbard, W., Jackel, L. D., Baird, Henry S., Guyon, Isabelle
This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.
Statistical Prediction with Kanerva's Sparse Distributed Memory
David Rogers Research Institute for Advanced Computer Science MS 230-5, NASA Ames Research Center Moffett Field, CA 94035 ABSTRACT A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near-or over-capacity, where the associative-memory behavior of the model breaksdown, the processing performed by the model can be interpreted asthat of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint ofsparse distributed memory and for which the standard formulation ofSDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with'Genetic Algorithms', and a method for improving the capacity of SDM even when used as an associative memory. OVERVIEW This work is the result of studies involving two seemingly separate topics that proved to share a common framework.
ALVINN: An Autonomous Land Vehicle in a Neural Network
ALVINN (Autonomous Land Vehicle In a Neural Network) is a 3-layer back-propagation network designed for the task of road following. Currently ALVINNtakes images from a camera and a laser range finder as input and produces as output the direction the vehicle should travel in order to follow the road. Training has been conducted using simulated road images. Successful tests on the Carnegie Mellon autonomous navigation test vehicle indicate that the network can effectively follow real roads under certain field conditions. The representation developed to perfOIm the task differs dramatically whenthe networlc is trained under various conditions, suggesting the possibility of a novel adaptive autonomous navigation system capable of tailoring its processing to the conditions at hand.
A Massively Parallel Self-Tuning Context-Free Parser
ABSTRACT The Parsing and Learning System(PALS) is a massively parallel self-tuning context-free parser. It is capable of parsing sentences of unbounded length mainly due to its parse-tree representation scheme. The system is capable of improving its parsing performance through the presentation of training examples. INTRODUCTION Recent PDP research[Rumelhart et al.- 1986; Feldman and Ballard, 1982; Lippmann, 1987] involving natural language processtng[Fanty, 1988; Selman, 1985; Waltz and Pollack, 1985] have unrealistically restricted sentences to a fixed length. A solution to this problem was presented in the system CONPARSE[Charniak and Santos.
ALVINN: An Autonomous Land Vehicle in a Neural Network
ALVINN (Autonomous Land Vehicle In a Neural Network) is a 3-layer back-propagation network designed for the task of road following. Currently ALVINN takes images from a camera and a laser range finder as input and produces as output the direction the vehicle should travel in order to follow the road. Training has been conducted using simulated road images. Successful tests on the Carnegie Mellon autonomous navigation test vehicle indicate that the network can effectively follow real roads under certain field conditions. The representation developed to perfOIm the task differs dramatically when the networlc is trained under various conditions, suggesting the possibility of a novel adaptive autonomous navigation system capable of tailoring its processing to the conditions at hand.
An Optimality Principle for Unsupervised Learning
We propose an optimality principle for training an unsupervised feedforward neural network based upon maximal ability to reconstruct the input data from the network outputs. We describe an algorithm which can be used to train either linear or nonlinear networks with certain types of nonlinearity. Examples of applications to the problems of image coding, feature detection, and analysis of randomdot stereograms are presented.
An Optimality Principle for Unsupervised Learning
We propose an optimality principle for training an unsupervised feedforwardneural network based upon maximal ability to reconstruct the input data from the network outputs. Wedescribe an algorithm which can be used to train either linear or nonlinear networks with certain types of nonlinearity. Examples of applications to the problems of image coding, feature detection, and analysis of randomdot stereogramsare presented.