Goto

Collaborating Authors

 Education


Countering Feedback Delays in Multi-Agent Learning

Neural Information Processing Systems

We consider a model of game-theoretic learning based on online mirror descent (OMD) with asynchronous and delayed feedback information. Instead of focusing on specific games, we consider a broad class of continuous games defined by the general equilibrium stability notion, which we call ฮป-variational stability. Our first contribution is that, in this class of games, the actual sequence of play induced by OMD-based learning converges to Nash equilibria provided that the feedback delays faced by the players are synchronous and bounded. Subsequently, to tackle fully decentralized, asynchronous environments with (possibly) unbounded delays between actions and feedback, we propose a variant of OMD which we call delayed mirror descent (DMD), and which relies on the repeated leveraging of past information. With this modification, the algorithm converges to Nash equilibria with no feedback synchronicity assumptions and even when the delays grow superlinearly relative to the horizon of play.


Learning to learn by gradient descent by gradient descent

Neural Information Processing Systems

The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.


Satisfying Real-world Goals with Dataset Constraints

Neural Information Processing Systems

The goal of minimizing misclassification error on a training set is often just one of several real-world goals that might be defined on different datasets. For example, one may require a classifier to also make positive predictions at some specified rate for some subpopulation (fairness), or to achieve a specified empirical recall. Other real-world goals include reducing churn with respect to a previously deployed model, or stabilizing online training. In this paper we propose handling multiple goals on multiple datasets by training with dataset constraints, using the ramp penalty to accurately quantify costs, and present an efficient algorithm to approximately optimize the resulting non-convex constrained optimization problem. Experiments on both benchmark and real-world industry datasets demonstrate the effectiveness of our approach.


Deep Learning Games

Neural Information Processing Systems

We investigate a reduction of supervised learning to game playing that reveals new connections and learning methods. For convex one-layer problems, we demonstrate an equivalence between global minimizers of the training problem and Nash equilibria in a simple game. We then show how the game can be extended to general acyclic neural networks with differentiable convex gates, establishing a bijection between the Nash equilibria and critical (or KKT) points of the deep learning problem. Based on these connections we investigate alternative learning methods, and find that regret matching can achieve competitive training performance while producing sparser models than current deep learning approaches.


Adaptive Skills Adaptive Partitions (ASAP)

Neural Information Processing Systems

We introduce the Adaptive Skills, Adaptive Partitions (ASAP) framework that (1) learns skills (i.e., temporally extended actions or options) as well as (2) where to apply them. We believe that both (1) and (2) are necessary for a truly general skill learning framework, which is a key building block needed to scale up to lifelong learning agents. The ASAP framework is also able to solve related new tasks simply by adapting where it applies its existing learned skills. We prove that ASAP converges to a local optimum under natural conditions. Finally, our experimental results, which include a RoboCup domain, demonstrate the ability of ASAP to learn where to reuse skills as well as solve multiple tasks with considerably less experience than solving each task from scratch.


Matrix Completion has No Spurious Local Minimum

Neural Information Processing Systems

Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice. Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear why random or arbitrary initialization suffices in practice. We prove that the commonly used non-convex objective function for matrix completion has no spurious local minima --- all local minima must also be global. Therefore, many popular optimization algorithms such as (stochastic) gradient descent can provably solve matrix completion with \textit{arbitrary} initialization in polynomial time.


If Ted Talks are getting shorter, what does that say about our attention spans?

The Guardian

Age: Ted started in 1984. And has Ted been talking ever since? I know, and they do the inspirational online talks. Correct, under the slogan "Ideas change everything". She was talking at the Hay festival, in Wales.



Bandit Learning with Implicit Feedback Yi Qi

Neural Information Processing Systems

Implicit feedback, such as user clicks, although abundant in online information service systems, does not provide substantial evidence on users' evaluation of system's output. Without proper modeling, such incomplete supervision inevitably misleads model estimation, especially in a bandit learning setting where the feedback is acquired on the fly. In this work, we perform contextual bandit learning with implicit feedback by modeling the feedback as a composition of user result examination and relevance judgment. Since users' examination behavior is unobserved, we introduce latent variables to model it. We perform Thompson sampling on top of variational Bayesian inference for arm selection and model update. Our upper regret bound analysis of the proposed algorithm proves its feasibility of learning from implicit feedback in a bandit setting; and extensive empirical evaluations on click logs collected from a major MOOC platform further demonstrate its learning effectiveness in practice.


This AI-powered language-learning tool teaches you 11 languages

Mashable

TL;DR: Mosalingua uses AI to help you learn a new language, and it's only 98 for life. Being able to speak a second language is super useful. The problem is that learning to speak another language is pretty tough, especially if you're balancing work, school, and so many other responsibilities. If you want an easier way to learn a second, third, or even fourth language, check out Mosalingua. Their self-paced lessons give you the chance to learn up to 11 languages in a way that works for you, and it's only 97.99 for a lifetime subscription (reg.