Plotting

 taxnodes:Technology: Overviews


Enhancing Arabic Automated Essay Scoring with Synthetic Data and Error Injection

arXiv.org Artificial Intelligence

Automated Essay Scoring (AES) plays a crucial role in assessing language learners' writing quality, reducing grading workload, and providing real-time feedback. Arabic AES systems are particularly challenged by the lack of annotated essay datasets. This paper presents a novel framework leveraging Large Language Models (LLMs) and Transformers to generate synthetic Arabic essay datasets for AES. We prompt an LLM to generate essays across CEFR proficiency levels and introduce controlled error injection using a fine-tuned Standard Arabic BERT model for error type prediction. Our approach produces realistic human-like essays, contributing a dataset of 3,040 annotated essays. Additionally, we develop a BERT-based auto-marking system for accurate and scalable Arabic essay evaluation. Experimental results demonstrate the effectiveness of our framework in improving Arabic AES performance.


Adapt, Agree, Aggregate: Semi-Supervised Ensemble Labeling for Graph Convolutional Networks

arXiv.org Artificial Intelligence

In this paper, we propose a novel framework that combines ensemble learning with augmented graph structures to improve the performance and robustness of semi-supervised node classification in graphs. By creating multiple augmented views of the same graph, our approach harnesses the "wisdom of a diverse crowd", mitigating the challenges posed by noisy graph structures. Leveraging ensemble learning allows us to simultaneously achieve three key goals: adaptive confidence threshold selection based on model agreement, dynamic determination of the number of high-confidence samples for training, and robust extraction of pseudo-labels to mitigate confirmation bias. Our approach uniquely integrates adaptive ensemble consensus to flexibly guide pseudo-label extraction and sample selection, reducing the risks of error accumulation and improving robustness. Furthermore, the use of ensemble-driven consensus for pseudo-labeling captures subtle patterns that individual models often overlook, enabling the model to generalize better. Experiments on several real-world datasets demonstrate the effectiveness of our proposed method.


Detecting and Mitigating DDoS Attacks with AI: A Survey

arXiv.org Artificial Intelligence

Distributed Denial of Service attacks represent an active cybersecurity research problem. Recent research shifted from static rule-based defenses towards AI-based detection and mitigation. This comprehensive survey covers several key topics. Preeminently, state-of-the-art AI detection methods are discussed. An in-depth taxonomy based on manual expert hierarchies and an AI-generated dendrogram are provided, thus settling DDoS categorization ambiguities. An important discussion on available datasets follows, covering data format options and their role in training AI detection methods together with adversarial training and examples augmentation. Beyond detection, AI based mitigation techniques are surveyed as well. Finally, multiple open research directions are proposed.


A Survey on Mathematical Reasoning and Optimization with Large Language Models

arXiv.org Artificial Intelligence

Mathematical reasoning and optimization are fundamental to artificial intelligence and computational problem-solving. Recent advancements in Large Language Models (LLMs) have significantly improved AI-driven mathematical reasoning, theorem proving, and optimization techniques. This survey explores the evolution of mathematical problem-solving in AI, from early statistical learning approaches to modern deep learning and transformer-based methodologies. We review the capabilities of pretrained language models and LLMs in performing arithmetic operations, complex reasoning, theorem proving, and structured symbolic computation. A key focus is on how LLMs integrate with optimization and control frameworks, including mixed-integer programming, linear quadratic control, and multi-agent optimization strategies. We examine how LLMs assist in problem formulation, constraint generation, and heuristic search, bridging theoretical reasoning with practical applications. We also discuss enhancement techniques such as Chain-of-Thought reasoning, instruction tuning, and tool-augmented methods that improve LLM's problem-solving performance. Despite their progress, LLMs face challenges in numerical precision, logical consistency, and proof verification. Emerging trends such as hybrid neural-symbolic reasoning, structured prompt engineering, and multi-step self-correction aim to overcome these limitations. Future research should focus on interpretability, integration with domain-specific solvers, and improving the robustness of AI-driven decision-making. This survey offers a comprehensive review of the current landscape and future directions of mathematical reasoning and optimization with LLMs, with applications across engineering, finance, and scientific research.


A General Method for Robust Learning from Batches

Neural Information Processing Systems

In many applications, data is collected in batches, some of which may be corrupt or even adversarial. Recent work derived optimal robust algorithms for estimating finite distributions in this setting. We develop a general framework of robust learning from batches, and determine the limits of both distribution estimation, and notably, classification, over arbitrary, including continuous, domains. Building on this framework, we derive the first robust agnostic: (1) polynomial-time distribution estimation algorithms for structured distributions, including piecewisepolynomial, monotone, log-concave, and gaussian-mixtures, and also significantly improve their sample complexity; (2) classification algorithms, and also establish their near-optimal sample complexity; (3) computationally-efficient algorithms for the fundamental problem of interval-based classification that underlies nearly all natural-1-dimensional classification problems.



BIGOS V2 Benchmark for Polish ASR: Curated Datasets and Tools for Reproducible Evaluation

Neural Information Processing Systems

Speech datasets available in the public domain are often underutilized because of challenges in accessibility and interoperability. To address this, a system to survey, catalog, and curate existing speech datasets was developed, enabling reproducible evaluation of automatic speech recognition (ASR) systems. The system was applied to curate over 24 datasets and evaluate 25 ASR models, with a specific focus on Polish. This research represents the most extensive comparison to date of commercial and free ASR systems for the Polish language, drawing insights from 600 system-model-test set evaluations across 8 analysis scenarios. Curated datasets and benchmark results are available publicly.