Not enough data to create a plot.
Try a different view from the menu above.
taxnodes:Technology: Overviews
Opponent Modeling with In-context Search Kai Li
Opponent modeling is a longstanding research topic aimed at enhancing decisionmaking by modeling information about opponents in multi-agent environments. However, existing approaches often face challenges such as having difficulty generalizing to unknown opponent policies and conducting unstable performance. To tackle these challenges, we propose a novel approach based on in-context learning and decision-time search named Opponent Modeling with In-context Search (OMIS). OMIS leverages in-context learning-based pretraining to train a Transformer model for decision-making. It consists of three in-context components: an actor learning best responses to opponent policies, an opponent imitator mimicking opponent actions, and a critic estimating state values. When testing in an environment that features unknown non-stationary opponent agents, OMIS uses pretrained in-context components for decision-time search to refine the actor's policy. Theoretically, we prove that under reasonable assumptions, OMIS without search converges in opponent policy recognition and has good generalization properties; with search, OMIS provides improvement guarantees, exhibiting performance stability. Empirically, in competitive, cooperative, and mixed environments, OMIS demonstrates more effective and stable adaptation to opponents than other approaches. See our project website at https://sites.google.com/view/nips2024-omis.
Neural Conditional Probability for Uncertainty Quantification
We introduce Neural Conditional Probability (NCP), an operator-theoretic approach to learning conditional distributions with a focus on statistical inference tasks. NCP can be used to build conditional confidence regions and extract key statistics such as conditional quantiles, mean, and covariance. It offers streamlined learning via a single unconditional training phase, allowing efficient inference without the need for retraining even when conditioning changes. By leveraging the approximation capabilities of neural networks, NCP efficiently handles a wide variety of complex probability distributions. We provide theoretical guarantees that ensure both optimization consistency and statistical accuracy. In experiments, we show that NCP with a 2-hidden-layer network matches or outperforms leading methods. This demonstrates that a a minimalistic architecture with a theoretically grounded loss can achieve competitive results, even in the face of more complex architectures.
TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models (PLMs), graph neural networks (GNNs), proposed novel entangled GNNs and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks.
Dense Unsupervised Learning for Video Segmentation Nikita Araslanov Simone Schaub-Meyer 1 Stefan Roth Department of Computer Science, TU Darmstadt
We present a novel approach to unsupervised learning for video object segmentation (VOS). Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime. We rely on uniform grid sampling to extract a set of anchors and train our model to disambiguate between them on both inter-and intra-video levels. However, a naive scheme to train such a model results in a degenerate solution. We propose to prevent this with a simple regularisation scheme, accommodating the equivariance property of the segmentation task to similarity transformations. Our training objective admits efficient implementation and exhibits fast training convergence. On established VOS benchmarks, our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
Causal Bandits with Unknown Graph Structure
In causal bandit problems, the action set consists of interventions on variables of a causal graph. Several researchers have recently studied such bandit problems and pointed out their practical applications. However, all existing works rely on a restrictive and impractical assumption that the learner is given full knowledge of the causal graph structure upfront. In this paper, we develop novel causal bandit algorithms without knowing the causal graph. Our algorithms work well for causal trees, causal forests and a general class of causal graphs. The regret guarantees of our algorithms greatly improve upon those of standard multi-armed bandit (MAB) algorithms under mild conditions. Lastly, we prove our mild conditions are necessary: without them one cannot do better than standard MAB algorithms.
Causal Bandits with Unknown Graph Structure
In causal bandit problems, the action set consists of interventions on variables of a causal graph. Several researchers have recently studied such bandit problems and pointed out their practical applications. However, all existing works rely on a restrictive and impractical assumption that the learner is given full knowledge of the causal graph structure upfront. In this paper, we develop novel causal bandit algorithms without knowing the causal graph. Our algorithms work well for causal trees, causal forests and a general class of causal graphs. The regret guarantees of our algorithms greatly improve upon those of standard multi-armed bandit (MAB) algorithms under mild conditions. Lastly, we prove our mild conditions are necessary: without them one cannot do better than standard MAB algorithms.
A Related Work
In this section, we will give an overview of the related literature in time series forecasting. Traditional Time Series Models The first generation of well-discussed time series model is the autoregressive family. ARIMA Box & Jenkins (1968); Box & Pierce (1970) follows the Markov process and build recursive sequential forecasting. However, a plain autoregressive process has difficulty in dealing non-stationary sequences. Thus, ARIMA employed a pre-process iteration by differencing, which transforms the series to stationary. Still, ARIMA and related models have the linear assumption in the autoregressive process, which limits their usage in complex forecasting tasks. Deep Neural Network in Forecasting With the bloom of deep neural networks, recurrent neural networks (RNNs) were designed for tasks involving sequential data.