Goto

Collaborating Authors

 Mathematics of Computing: Overviews


Operator Learning: A Statistical Perspective

arXiv.org Machine Learning

Operator learning has emerged as a powerful tool in scientific computing for approximating mappings between infinite-dimensional function spaces. A primary application of operator learning is the development of surrogate models for the solution operators of partial differential equations (PDEs). These methods can also be used to develop black-box simulators to model system behavior from experimental data, even without a known mathematical model. In this article, we begin by formalizing operator learning as a function-to-function regression problem and review some recent developments in the field. We also discuss PDE-specific operator learning, outlining strategies for incorporating physical and mathematical constraints into architecture design and training processes. Finally, we end by highlighting key future directions such as active data collection and the development of rigorous uncertainty quantification frameworks.


FlowKac: An Efficient Neural Fokker-Planck solver using Temporal Normalizing flows and the Feynman Kac-Formula

arXiv.org Machine Learning

Solving the Fokker-Planck equation for high-dimensional complex dynamical systems remains a pivotal yet challenging task due to the intractability of analytical solutions and the limitations of traditional numerical methods. In this work, we present FlowKac, a novel approach that reformulates the Fokker-Planck equation using the Feynman-Kac formula, allowing to query the solution at a given point via the expected values of stochastic paths. A key innovation of FlowKac lies in its adaptive stochastic sampling scheme which significantly reduces the computational complexity while maintaining high accuracy. This sampling technique, coupled with a time-indexed normalizing flow, designed for capturing time-evolving probability densities, enables robust sampling of collocation points, resulting in a flexible and mesh-free solver. This formulation mitigates the curse of dimensionality and enhances computational efficiency and accuracy, which is particularly crucial for applications that inherently require dimensions beyond the conventional three. We validate the robustness and scalability of our method through various experiments on a range of stochastic differential equations, demonstrating significant improvements over existing techniques.


A Survey on Data Markets

arXiv.org Artificial Intelligence

Data is the new oil of the 21st century. The growing trend of trading data for greater welfare has led to the emergence of data markets. A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place as a result of data buyers and data sellers being in contact with one another, either directly or through mediating agents. It serves as a coordinating mechanism by which several functions, including the pricing and the distribution of data as the most important ones, interact to make the value of data fully exploited and enhanced. In this article, we present a comprehensive survey of this important and emerging direction from the aspects of data search, data productization, data transaction, data pricing, revenue allocation as well as privacy, security, and trust issues. We also investigate the government policies and industry status of data markets across different countries and different domains. Finally, we identify the unresolved challenges and discuss possible future directions for the development of data markets.


A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games

Neural Information Processing Systems

In this work, we study two-player zero-sum stochastic games and develop a variant of the smoothed best-response learning dynamics that combines independent learning dynamics for matrix games with the minimax value iteration for stochastic games. The resulting learning dynamics are payoff-based, convergent, rational, and symmetric between the two players.


Differentiable Programming for Differential Equations: A Review

arXiv.org Machine Learning

The differentiable programming paradigm is a cornerstone of modern scientific computing. It refers to numerical methods for computing the gradient of a numerical model's output. Many scientific models are based on differential equations, where differentiable programming plays a crucial role in calculating model sensitivities, inverting model parameters, and training hybrid models that combine differential equations with data-driven approaches. Furthermore, recognizing the strong synergies between inverse methods and machine learning offers the opportunity to establish a coherent framework applicable to both fields. Differentiating functions based on the numerical solution of differential equations is non-trivial. Numerous methods based on a wide variety of paradigms have been proposed in the literature, each with pros and cons specific to the type of problem investigated. Here, we provide a comprehensive review of existing techniques to compute derivatives of numerical solutions of differential equations. We first discuss the importance of gradients of solutions of differential equations in a variety of scientific domains. Second, we lay out the mathematical foundations of the various approaches and compare them with each other. Third, we cover the computational considerations and explore the solutions available in modern scientific software. Last but not least, we provide best-practices and recommendations for practitioners. We hope that this work accelerates the fusion of scientific models and data, and fosters a modern approach to scientific modelling.


Policy Space Response Oracles: A Survey

arXiv.org Artificial Intelligence

Game theory provides a mathematical way to study the interaction between multiple decision makers. However, classical game-theoretic analysis is limited in scalability due to the large number of strategies, precluding direct application to more complex scenarios. This survey provides a comprehensive overview of a framework for large games, known as Policy Space Response Oracles (PSRO), which holds promise to improve scalability by focusing attention on sufficient subsets of strategies. We first motivate PSRO and provide historical context. We then focus on the strategy exploration problem for PSRO: the challenge of assembling effective subsets of strategies that still represent the original game well with minimum computational cost. We survey current research directions for enhancing the efficiency of PSRO, and explore the applications of PSRO across various domains. We conclude by discussing open questions and future research.


A review on data-driven constitutive laws for solids

arXiv.org Artificial Intelligence

This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon relevant aspects such as data sampling techniques, design of experiments, verification, and validation.


Locality Regularized Reconstruction: Structured Sparsity and Delaunay Triangulations

arXiv.org Machine Learning

Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points $[\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n] = \mathbf{X} \in \mathbb{R}^{d \times n}$ and a vector $\mathbf{y} \in \mathbb{R}^d$, the goal is to find coefficients $\mathbf{w} \in \mathbb{R}^n$ so that $\mathbf{X} \mathbf{w} \approx \mathbf{y}$, subject to some desired structure on $\mathbf{w}$. In this work we seek $\mathbf{w}$ that forms a local reconstruction of $\mathbf{y}$ by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of $\mathbf{X}$ that are close to $\mathbf{y}$ when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of $\mathbf{X}$ have a unique Delaunay triangulation, the optimal coefficients' number of non-zero entries is upper bounded by $d+1$, thereby providing local sparse solutions when $d \ll n$. Under the same condition we also show that for any $\mathbf{y}$ contained in the convex hull of $\mathbf{X}$ there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing $\mathbf{y}$. This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of $\mathbf{X}$. We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex.


Learning in Mean Field Games: A Survey

arXiv.org Artificial Intelligence

Non-cooperative and cooperative games with a very large number of players have many applications but remain generally intractable when the number of players increases. Introduced by Lasry and Lions, and Huang, Caines and Malham\'e, Mean Field Games (MFGs) rely on a mean-field approximation to allow the number of players to grow to infinity. Traditional methods for solving these games generally rely on solving partial or stochastic differential equations with a full knowledge of the model. Recently, Reinforcement Learning (RL) has appeared promising to solve complex problems at scale. The combination of RL and MFGs is promising to solve games at a very large scale both in terms of population size and environment complexity. In this survey, we review the quickly growing recent literature on RL methods to learn equilibria and social optima in MFGs. We first identify the most common settings (static, stationary, and evolutive) of MFGs. We then present a general framework for classical iterative methods (based on best-response computation or policy evaluation) to solve MFGs in an exact way. Building on these algorithms and the connection with Markov Decision Processes, we explain how RL can be used to learn MFG solutions in a model-free way. Last, we present numerical illustrations on a benchmark problem, and conclude with some perspectives.


The Multiverse of Dynamic Mode Decomposition Algorithms

arXiv.org Artificial Intelligence

Dynamic Mode Decomposition (DMD) is a popular data-driven analysis technique used to decompose complex, nonlinear systems into a set of modes, revealing underlying patterns and dynamics through spectral analysis. This review presents a comprehensive and pedagogical examination of DMD, emphasizing the role of Koopman operators in transforming complex nonlinear dynamics into a linear framework. A distinctive feature of this review is its focus on the relationship between DMD and the spectral properties of Koopman operators, with particular emphasis on the theory and practice of DMD algorithms for spectral computations. We explore the diverse "multiverse" of DMD methods, categorized into three main areas: linear regression-based methods, Galerkin approximations, and structure-preserving techniques. Each category is studied for its unique contributions and challenges, providing a detailed overview of significant algorithms and their applications as outlined in Table 1. We include a MATLAB package with examples and applications to enhance the practical understanding of these methods. This review serves as both a practical guide and a theoretical reference for various DMD methods, accessible to both experts and newcomers, and enabling readers to delve into their areas of interest in the expansive field of DMD.