Goto

Collaborating Authors

 Internet of Things: Overviews


Unraveling Attacks in Machine Learning-based IoT Ecosystems: A Survey and the Open Libraries Behind Them

arXiv.org Artificial Intelligence

The advent of the Internet of Things (IoT) has brought forth an era of unprecedented connectivity, with an estimated 80 billion smart devices expected to be in operation by the end of 2025. These devices facilitate a multitude of smart applications, enhancing the quality of life and efficiency across various domains. Machine Learning (ML) serves as a crucial technology, not only for analyzing IoT-generated data but also for diverse applications within the IoT ecosystem. For instance, ML finds utility in IoT device recognition, anomaly detection, and even in uncovering malicious activities. This paper embarks on a comprehensive exploration of the security threats arising from ML's integration into various facets of IoT, spanning various attack types including membership inference, adversarial evasion, reconstruction, property inference, model extraction, and poisoning attacks. Unlike previous studies, our work offers a holistic perspective, categorizing threats based on criteria such as adversary models, attack targets, and key security attributes (confidentiality, availability, and integrity). We delve into the underlying techniques of ML attacks in IoT environment, providing a critical evaluation of their mechanisms and impacts. Furthermore, our research thoroughly assesses 65 libraries, both author-contributed and third-party, evaluating their role in safeguarding model and data privacy. We emphasize the availability and usability of these libraries, aiming to arm the community with the necessary tools to bolster their defenses against the evolving threat landscape. Through our comprehensive review and analysis, this paper seeks to contribute to the ongoing discourse on ML-based IoT security, offering valuable insights and practical solutions to secure ML models and data in the rapidly expanding field of artificial intelligence in IoT.


Atmosphere: Context and situational-aware collaborative IoT architecture for edge-fog-cloud computing

arXiv.org Artificial Intelligence

The Internet of Things (IoT) has grown significantly in popularity, accompanied by increased capacity and lower cost of communications, and overwhelming development of technologies. At the same time, big data and real-time data analysis have taken on great importance and have been accompanied by unprecedented interest in sharing data among citizens, public administrations and other organisms, giving rise to what is known as the Collaborative Internet of Things. This growth in data and infrastructure must be accompanied by a software architecture that allows its exploitation. Although there are various proposals focused on the exploitation of the IoT at edge, fog and/or cloud levels, it is not easy to find a software solution that exploits the three tiers together, taking maximum advantage not only of the analysis of contextual and situational data at each tier, but also of two-way communications between adjacent ones. In this paper, we propose an architecture that solves these deficiencies by proposing novel technologies which are appropriate for managing the resources of each tier: edge, fog and cloud. In addition, the fact that two-way communications along the three tiers of the architecture is allowed considerably enriches the contextual and situational information in each layer, and substantially assists decision making in real time. The paper illustrates the proposed software architecture through a case study of respiratory disease surveillance in hospitals. As a result, the proposed architecture permits efficient communications between the different tiers responding to the needs of these types of IoT scenarios.


Applications of machine learning and IoT for Outdoor Air Pollution Monitoring and Prediction: A Systematic Literature Review

arXiv.org Artificial Intelligence

According to the World Health Organization (WHO), air pollution kills seven million people every year. Outdoor air pollution is a major environmental health problem affecting low, middle, and high-income countries. In the past few years, the research community has explored IoT-enabled machine learning applications for outdoor air pollution prediction. The general objective of this paper is to systematically review applications of machine learning and Internet of Things (IoT) for outdoor air pollution prediction and the combination of monitoring sensors and input features used. Two research questions were formulated for this review. 1086 publications were collected in the initial PRISMA stage. After the screening and eligibility phases, 37 papers were selected for inclusion. A cost-based analysis was conducted on the findings to highlight high-cost monitoring, low-cost IoT and hybrid enabled prediction. Three methods of prediction were identified: time series, feature-based and spatio-temporal. This review's findings identify major limitations in applications found in the literature, namely lack of coverage, lack of diversity of data and lack of inclusion of context-specific features. This review proposes directions for future research and underlines practical implications in healthcare, urban planning, global synergy and smart cities.


Industrial Internet of Things Intelligence Empowering Smart Manufacturing: A Literature Review

arXiv.org Artificial Intelligence

The fiercely competitive business environment and increasingly personalized customization needs are driving the digital transformation and upgrading of the manufacturing industry. IIoT intelligence, which can provide innovative and efficient solutions for various aspects of the manufacturing value chain, illuminates the path of transformation for the manufacturing industry. It is time to provide a systematic vision of IIoT intelligence. However, existing surveys often focus on specific areas of IIoT intelligence, leading researchers and readers to have biases in their understanding of IIoT intelligence, that is, believing that research in one direction is the most important for the development of IIoT intelligence, while ignoring contributions from other directions. Therefore, this paper provides a comprehensive overview of IIoT intelligence. We first conduct an in-depth analysis of the inevitability of manufacturing transformation and study the successful experiences from the practices of Chinese enterprises. Then we give our definition of IIoT intelligence and demonstrate the value of IIoT intelligence for industries in fucntions, operations, deployments, and application. Afterwards, we propose a hierarchical development architecture for IIoT intelligence, which consists of five layers. The practical values of technical upgrades at each layer are illustrated by a close look on lighthouse factories. Following that, we identify seven kinds of technologies that accelerate the transformation of manufacturing, and clarify their contributions. Finally, we explore the open challenges and development trends from four aspects to inspire future researches.


Is TinyML Sustainable? Assessing the Environmental Impacts of Machine Learning on Microcontrollers

arXiv.org Artificial Intelligence

The sustained growth of carbon emissions and global waste elicits significant sustainability concerns for our environment's future. The growing Internet of Things (IoT) has the potential to exacerbate this issue. However, an emerging area known as Tiny Machine Learning (TinyML) has the opportunity to help address these environmental challenges through sustainable computing practices. TinyML, the deployment of machine learning (ML) algorithms onto low-cost, low-power microcontroller systems, enables on-device sensor analytics that unlocks numerous always-on ML applications. This article discusses both the potential of these TinyML applications to address critical sustainability challenges, as well as the environmental footprint of this emerging technology. Through a complete life cycle analysis (LCA), we find that TinyML systems present opportunities to offset their carbon emissions by enabling applications that reduce the emissions of other sectors. Nevertheless, when globally scaled, the carbon footprint of TinyML systems is not negligible, necessitating that designers factor in environmental impact when formulating new devices. Finally, we outline research directions to enable further sustainable contributions of TinyML.


Image Transformation for IoT Time-Series Data: A Review

arXiv.org Artificial Intelligence

In the era of the Internet of Things (IoT), where smartphones, built-in systems, wireless sensors, and nearly every smart device connect through local networks or the internet, billions of smart things communicate with each other and generate vast amounts of time-series data. As IoT time-series data is high-dimensional and high-frequency, time-series classification or regression has been a challenging issue in IoT. Recently, deep learning algorithms have demonstrated superior performance results in time-series data classification in many smart and intelligent IoT applications. However, it is hard to explore the hidden dynamic patterns and trends in time-series. Recent studies show that transforming IoT data into images improves the performance of the learning model. In this paper, we present a review of these studies which use image transformation/encoding techniques in IoT domain. We examine the studies according to their encoding techniques, data types, and application areas. Lastly, we emphasize the challenges and future dimensions of image transformation.


Smart Home Goal Feature Model -- A guide to support Smart Homes for Ageing in Place

arXiv.org Artificial Intelligence

Smart technologies are significant in supporting ageing in place for elderly. Leveraging Artificial Intelligence (AI) and Machine Learning (ML), it provides peace of mind, enabling the elderly to continue living independently. Elderly use smart technologies for entertainment and social interactions, this can be extended to provide safety and monitor health and environmental conditions, detect emergencies and notify informal and formal caregivers when care is needed. This paper provides an overview of the smart home technologies commercially available to support ageing in place, the advantages and challenges of smart home technologies, and their usability from elderlys perspective. Synthesizing prior knowledge, we created a structured Smart Home Goal Feature Model (SHGFM) to resolve heuristic approaches used by the Subject Matter Experts (SMEs) at aged care facilities and healthcare researchers in adapting smart homes. The SHGFM provides SMEs the ability to (i) establish goals and (ii) identify features to set up strategies to design, develop and deploy smart homes for the elderly based on personalised needs. Our model provides guidance to healthcare researchers and aged care industries to set up smart homes based on the needs of elderly, by defining a set of goals at different levels mapped to a different set of features.


Semantics-Empowered Communication: A Tutorial-cum-Survey

arXiv.org Artificial Intelligence

Along with the springing up of the semantics-empowered communication (SemCom) research, it is now witnessing an unprecedentedly growing interest towards a wide range of aspects (e.g., theories, applications, metrics and implementations) in both academia and industry. In this work, we primarily aim to provide a comprehensive survey on both the background and research taxonomy, as well as a detailed technical tutorial. Specifically, we start by reviewing the literature and answering the "what" and "why" questions in semantic transmissions. Afterwards, we present the ecosystems of SemCom, including history, theories, metrics, datasets and toolkits, on top of which the taxonomy for research directions is presented. Furthermore, we propose to categorize the critical enabling techniques by explicit and implicit reasoning-based methods, and elaborate on how they evolve and contribute to modern content & channel semantics-empowered communications. Besides reviewing and summarizing the latest efforts in SemCom, we discuss the relations with other communication levels (e.g., conventional communications) from a holistic and unified viewpoint. Subsequently, in order to facilitate future developments and industrial applications, we also highlight advanced practical techniques for boosting semantic accuracy, robustness, and large-scale scalability, just to mention a few. Finally, we discuss the technical challenges that shed light on future research opportunities.


Progression and Challenges of IoT in Healthcare: A Short Review

arXiv.org Artificial Intelligence

Smart healthcare, an integral element of connected living, plays a pivotal role in fulfilling a fundamental human need. The burgeoning field of smart healthcare is poised to generate substantial revenue in the foreseeable future. Its multifaceted framework encompasses vital components such as the Internet of Things (IoT), medical sensors, artificial intelligence (AI), edge and cloud computing, as well as next-generation wireless communication technologies. Many research papers discuss smart healthcare and healthcare more broadly. Numerous nations have strategically deployed the Internet of Medical Things (IoMT) alongside other measures to combat the propagation of COVID-19. This combined effort has not only enhanced the safety of frontline healthcare workers but has also augmented the overall efficacy in managing the pandemic, subsequently reducing its impact on human lives and mortality rates. Remarkable strides have been made in both applications and technology within the IoMT domain. However, it is imperative to acknowledge that this technological advancement has introduced certain challenges, particularly in the realm of security. The rapid and extensive adoption of IoMT worldwide has magnified issues related to security and privacy. These encompass a spectrum of concerns, ranging from replay attacks, man-in-the-middle attacks, impersonation, privileged insider threats, remote hijacking, password guessing, and denial of service (DoS) attacks, to malware incursions. In this comprehensive review, we undertake a comparative analysis of existing strategies designed for the detection and prevention of malware in IoT environments.


Reliable and Efficient Data Collection in UAV-based IoT Networks

arXiv.org Artificial Intelligence

Internet of Things (IoT) involves sensors for monitoring and wireless networks for efficient communication. However, resource-constrained IoT devices and limitations in existing wireless technologies hinder its full potential. Integrating Unmanned Aerial Vehicles (UAVs) into IoT networks can address some challenges by expanding its' coverage, providing security, and bringing computing closer to IoT devices. Nevertheless, effective data collection in UAV-assisted IoT networks is hampered by factors, including dynamic UAV behavior, environmental variables, connectivity instability, and security considerations. In this survey, we first explore UAV-based IoT networks, focusing on communication and networking aspects. Next, we cover various UAV-based data collection methods their advantages and disadvantages, followed by a discussion on performance metrics for data collection. As this article primarily emphasizes reliable and efficient data collection in UAV-assisted IoT networks, we briefly discuss existing research on data accuracy and consistency, network connectivity, and data security and privacy to provide insights into reliable data collection. Additionally, we discuss efficient data collection strategies in UAV-based IoT networks, covering trajectory and path planning, collision avoidance, sensor network clustering, data aggregation, UAV swarm formations, and artificial intelligence for optimization. We also present two use cases of UAVs as a service for enhancing data collection reliability and efficiency. Finally, we discuss future challenges in data collection for UAV-assisted IoT networks.