Not enough data to create a plot.
Try a different view from the menu above.
Decision Support Systems: Overviews
Digital Twin in Industries: A Comprehensive Survey
Zami, Md Bokhtiar Al, Shaon, Shaba, Quy, Vu Khanh, Nguyen, Dinh C.
Industrial networks are undergoing rapid transformation driven by the convergence of emerging technologies that are revolutionizing conventional workflows, enhancing operational efficiency, and fundamentally redefining the industrial landscape across diverse sectors. Amidst this revolution, Digital Twin (DT) emerges as a transformative innovation that seamlessly integrates real-world systems with their virtual counterparts, bridging the physical and digital realms. In this article, we present a comprehensive survey of the emerging DT-enabled services and applications across industries, beginning with an overview of DT fundamentals and its components to a discussion of key enabling technologies for DT. Different from literature works, we investigate and analyze the capabilities of DT across a wide range of industrial services, including data sharing, data offloading, integrated sensing and communication, content caching, resource allocation, wireless networking, and metaverse. In particular, we present an in-depth technical discussion of the roles of DT in industrial applications across various domains, including manufacturing, healthcare, transportation, energy, agriculture, space, oil and gas, as well as robotics. Throughout the technical analysis, we delve into real-time data communications between physical and virtual platforms to enable industrial DT networking. Subsequently, we extensively explore and analyze a wide range of major privacy and security issues in DT-based industry. Taxonomy tables and the key research findings from the survey are also given, emphasizing important insights into the significance of DT in industries. Finally, we point out future research directions to spur further research in this promising area.
Rational inference of relative preferences
Statistical decision theory axiomatically assumes that the relative desirability of different options that humans perceive is well described by assigning them optionspecific scalar utility functions. However, this assumption is refuted by observed human behavior, including studies wherein preferences have been shown to change systematically simply through variation in the set of choice options presented. In this paper, we show that interpreting desirability as a relative comparison between available options at any particular decision instance results in a rational theory of value-inference that explains heretofore intractable violations of rational choice behavior in human subjects. Complementarily, we also characterize the conditions under which a rational agent selecting optimal options indicated by dynamic value inference in our framework will behave identically to one whose preferences are encoded using a static ordinal utility function.
A Data-driven and multi-agent decision support system for time slot management at container terminals: A case study for the Port of Rotterdam
Nadi, Ali, Snelder, Maaike, van Lint, J. W. C., Tavasszy, Lóránt
Controlling the departure time of the trucks from a container hub is important to both the traffic and the logistics systems. This, however, requires an intelligent decision support system that can control and manage truck arrival times at terminal gates. This paper introduces an integrated model that can be used to understand, predict, and control logistics and traffic interactions in the port-hinterland ecosystem. This approach is context-aware and makes use of big historical data to predict system states and apply control policies accordingly, on truck inflow and outflow. The control policies ensure multiple stakeholders satisfaction including those of trucking companies, terminal operators, and road traffic agencies. The proposed method consists of five integrated modules orchestrated to systematically steer truckers toward choosing those time slots that are expected to result in lower gate waiting times and more cost-effective schedules. The simulation is supported by real-world data and shows that significant gains can be obtained in the system.
What Lies beyond the Pareto Front? A Survey on Decision-Support Methods for Multi-Objective Optimization
Osika, Zuzanna, Salazar, Jazmin Zatarain, Roijers, Diederik M., Oliehoek, Frans A., Murukannaiah, Pradeep K.
We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms. As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fields. We provide an overview of the advances on this topic, including methods for visualization, mining the solution set, and uncertainty exploration as well as emerging research directions, including interactivity, explainability, and ethics. We synthesize these methods drawing from different fields of research to build a unified approach, independent of the application. Our goals are to reduce the entry barrier for researchers and practitioners on using MOO algorithms and to provide novel research directions.
Risk-Adaptive Approaches to Learning and Decision Making: A Survey
Uncertainty is prevalent in engineering design, statistical learning, and decision making broadly. Due to inherent risk-averseness and ambiguity about assumptions, it is common to address uncertainty by formulating and solving conservative optimization models expressed using measures of risk and related concepts. We survey the rapid development of risk measures over the last quarter century. From their beginning in financial engineering, we recount the spread to nearly all areas of engineering and applied mathematics. Solidly rooted in convex analysis, risk measures furnish a general framework for handling uncertainty with significant computational and theoretical advantages. We describe the key facts, list several concrete algorithms, and provide an extensive list of references for further reading. The survey recalls connections with utility theory and distributionally robust optimization, points to emerging applications areas such as fair machine learning, and defines measures of reliability.
Calibration of Quantum Decision Theory: Aversion to Large Losses and Predictability of Probabilistic Choices
Kovalenko, T., Vincent, S., Yukalov, V. I., Sornette, D.
We present the first calibration of quantum decision theory (QDT) to a dataset of binary risky choice. We quantitatively account for the fraction of choice reversals between two repetitions of the experiment, using a probabilistic choice formulation in the simplest form without model assumption or adjustable parameters. The prediction of choice reversal is then refined by introducing heterogeneity between decision makers through their differentiation into two groups: ``majoritarian'' and ``contrarian'' (in proportion 3:1). This supports the first fundamental tenet of QDT, which models choice as an inherent probabilistic process, where the probability of a prospect can be expressed as the sum of its utility and attraction factors. We propose to parameterise the utility factor with a stochastic version of cumulative prospect theory (logit-CPT), and the attraction factor with a constant absolute risk aversion (CARA) function. For this dataset, and penalising the larger number of QDT parameters via the Wilks test of nested hypotheses, the QDT model is found to perform significantly better than logit-CPT at both the aggregate and individual levels, and for all considered fit criteria for the first experiment iteration and for predictions (second ``out-of-sample'' iteration). The distinctive QDT effect captured by the attraction factor is mostly appreciable (i.e., most relevant and strongest in amplitude) for prospects with big losses. Our quantitative analysis of the experimental results supports the existence of an intrinsic limit of predictability, which is associated with the inherent probabilistic nature of choice. The results of the paper can find applications both in the prediction of choice of human decision makers as well as for organizing the operation of artificial intelligence.
Keyword Decisions in Sponsored Search Advertising: A Literature Review and Research Agenda
In sponsored search advertising (SSA), keywords serve as the basic unit of business model, linking three stakeholders: consumers, advertisers and search engines. This paper presents an overarching framework for keyword decisions that highlights the touchpoints in search advertising management, including four levels of keyword decisions, i.e., domain-specific keyword pool generation, keyword targeting, keyword assignment and grouping, and keyword adjustment. Using this framework, we review the state-of-the-art research literature on keyword decisions with respect to techniques, input features and evaluation metrics. Finally, we discuss evolving issues and identify potential gaps that exist in the literature and outline novel research perspectives for future exploration.
A Comprehensive Review of Digital Twin -- Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives
Thelen, Adam, Zhang, Xiaoge, Fink, Olga, Lu, Yan, Ghosh, Sayan, Youn, Byeng D., Todd, Michael D., Mahadevan, Sankaran, Hu, Chao, Hu, Zhen
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This second paper presents a literature review of key enabling technologies of digital twins, with an emphasis on uncertainty quantification, optimization methods, open source datasets and tools, major findings, challenges, and future directions. Discussions focus on current methods of uncertainty quantification and optimization and how they are applied in different dimensions of a digital twin. Additionally, this paper presents a case study where a battery digital twin is constructed and tested to illustrate some of the modeling and twinning methods reviewed in this two-part review. Code and preprocessed data for generating all the results and figures presented in the case study are available on GitHub.
Leveraging Expert Consistency to Improve Algorithmic Decision Support
De-Arteaga, Maria, Jeanselme, Vincent, Dubrawski, Artur, Chouldechova, Alexandra
Machine learning (ML) is increasingly being used to support high-stakes decisions, a trend owed in part to its promise of superior predictive power relative to human assessment. However, there is frequently a gap between decision objectives and what is captured in the observed outcomes used as labels to train ML models. As a result, machine learning models may fail to capture important dimensions of decision criteria, hampering their utility for decision support. In this work, we explore the use of historical expert decisions as a rich -- yet imperfect -- source of information that is commonly available in organizational information systems, and show that it can be leveraged to bridge the gap between decision objectives and algorithm objectives. We consider the problem of estimating expert consistency indirectly when each case in the data is assessed by a single expert, and propose influence function-based methodology as a solution to this problem. We then incorporate the estimated expert consistency into a predictive model through a training-time label amalgamation approach. This approach allows ML models to learn from experts when there is inferred expert consistency, and from observed labels otherwise. We also propose alternative ways of leveraging inferred consistency via hybrid and deferral models. In our empirical evaluation, focused on the context of child maltreatment hotline screenings, we show that (1) there are high-risk cases whose risk is considered by the experts but not wholly captured in the target labels used to train a deployed model, and (2) the proposed approach significantly improves precision for these cases.
On Nash Equilibria in Normal-Form Games With Vectorial Payoffs
Röpke, Willem, Roijers, Diederik M., Nowé, Ann, Rădulescu, Roxana
We provide an in-depth study of Nash equilibria in multi-objective normal form games (MONFGs), i.e., normal form games with vectorial payoffs. Taking a utility-based approach, we assume that each player's utility can be modelled with a utility function that maps a vector to a scalar utility. In the case of a mixed strategy, it is meaningful to apply such a scalarisation both before calculating the expectation of the payoff vector as well as after. This distinction leads to two optimisation criteria. With the first criterion, players aim to optimise the expected value of their utility function applied to the payoff vectors obtained in the game. With the second criterion, players aim to optimise the utility of expected payoff vectors given a joint strategy. Under this latter criterion, it was shown that Nash equilibria need not exist. Our first contribution is to provide a sufficient condition under which Nash equilibria are guaranteed to exist. Secondly, we show that when Nash equilibria do exist under both criteria, no equilibrium needs to be shared between the two criteria, and even the number of equilibria can differ. Thirdly, we contribute a study of pure strategy Nash equilibria under both criteria. We show that when assuming quasiconvex utility functions for players, the sets of pure strategy Nash equilibria under both optimisation criteria are equivalent. This result is further extended to games in which players adhere to different optimisation criteria. Finally, given these theoretical results, we construct an algorithm to compute all pure strategy Nash equilibria in MONFGs where players have a quasiconvex utility function.