Goto

Collaborating Authors

 History: Overviews


International AI Safety Report

arXiv.org Artificial Intelligence

I am honoured to present the International AI Safety Report. It is the work of 96 international AI experts who collaborated in an unprecedented effort to establish an internationally shared scientific understanding of risks from advanced AI and methods for managing them. We embarked on this journey just over a year ago, shortly after the countries present at the Bletchley Park AI Safety Summit agreed to support the creation of this report. Since then, we published an Interim Report in May 2024, which was presented at the AI Seoul Summit. We are now pleased to publish the present, full report ahead of the AI Action Summit in Paris in February 2025. Since the Bletchley Summit, the capabilities of general-purpose AI, the type of AI this report focuses on, have increased further. For example, new models have shown markedly better performance at tests of Professor Yoshua Bengio programming and scientific reasoning.


Introduction to AI Safety, Ethics, and Society

arXiv.org Artificial Intelligence

Artificial Intelligence is rapidly embedding itself within militaries, economies, and societies, reshaping their very foundations. Given the depth and breadth of its consequences, it has never been more pressing to understand how to ensure that AI systems are safe, ethical, and have a positive societal impact. This book aims to provide a comprehensive approach to understanding AI risk. Our primary goals include consolidating fragmented knowledge on AI risk, increasing the precision of core ideas, and reducing barriers to entry by making content simpler and more comprehensible. The book has been designed to be accessible to readers from diverse backgrounds. You do not need to have studied AI, philosophy, or other such topics. The content is skimmable and somewhat modular, so that you can choose which chapters to read. We introduce mathematical formulas in a few places to specify claims more precisely, but readers should be able to understand the main points without these.


International Scientific Report on the Safety of Advanced AI (Interim Report)

arXiv.org Artificial Intelligence

I am honoured to be chairing the delivery of the inaugural International Scientific Report on Advanced AI Safety. I am proud to publish this interim report which is the culmination of huge efforts by many experts over the six months since the work was commissioned at the Bletchley Park AI Safety Summit in November 2023. We know that advanced AI is developing very rapidly, and that there is considerable uncertainty over how these advanced AI systems might affect how we live and work in the future. AI has tremendous potential to change our lives for the better, but it also poses risks of harm. That is why having this thorough analysis of the available scientific literature and expert opinion is essential. The more we know, the better equipped we are to shape our collective destiny.


Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment

arXiv.org Artificial Intelligence

The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.


How Far Are We From AGI

arXiv.org Artificial Intelligence

The evolution of artificial intelligence (AI) has profoundly impacted human society, driving significant advancements in multiple sectors. Yet, the escalating demands on AI have highlighted the limitations of AI's current offerings, catalyzing a movement towards Artificial General Intelligence (AGI). AGI, distinguished by its ability to execute diverse real-world tasks with efficiency and effectiveness comparable to human intelligence, reflects a paramount milestone in AI evolution. While existing works have summarized specific recent advancements of AI, they lack a comprehensive discussion of AGI's definitions, goals, and developmental trajectories. Different from existing survey papers, this paper delves into the pivotal questions of our proximity to AGI and the strategies necessary for its realization through extensive surveys, discussions, and original perspectives. We start by articulating the requisite capability frameworks for AGI, integrating the internal, interface, and system dimensions. As the realization of AGI requires more advanced capabilities and adherence to stringent constraints, we further discuss necessary AGI alignment technologies to harmonize these factors. Notably, we emphasize the importance of approaching AGI responsibly by first defining the key levels of AGI progression, followed by the evaluation framework that situates the status-quo, and finally giving our roadmap of how to reach the pinnacle of AGI. Moreover, to give tangible insights into the ubiquitous impact of the integration of AI, we outline existing challenges and potential pathways toward AGI in multiple domains. In sum, serving as a pioneering exploration into the current state and future trajectory of AGI, this paper aims to foster a collective comprehension and catalyze broader public discussions among researchers and practitioners on AGI.


Universal Imitation Games

arXiv.org Artificial Intelligence

Alan Turing proposed in 1950 a framework called an imitation game to decide if a machine could think. Using mathematics developed largely after Turing -- category theory -- we analyze a broader class of universal imitation games (UIGs), which includes static, dynamic, and evolutionary games. In static games, the participants are in a steady state. In dynamic UIGs, "learner" participants are trying to imitate "teacher" participants over the long run. In evolutionary UIGs, the participants are competing against each other in an evolutionary game, and participants can go extinct and be replaced by others with higher fitness. We use the framework of category theory -- in particular, two influential results by Yoneda -- to characterize each type of imitation game. Universal properties in categories are defined by initial and final objects. We characterize dynamic UIGs where participants are learning by inductive inference as initial algebras over well-founded sets, and contrast them with participants learning by conductive inference over the final coalgebra of non-well-founded sets. We briefly discuss the extension of our categorical framework for UIGs to imitation games on quantum computers.


Investigating AI's Challenges in Reasoning and Explanation from a Historical Perspective

arXiv.org Artificial Intelligence

This paper provides an overview of the intricate relationship between social dynamics, technological advancements, and pioneering figures in the fields of cybernetics and artificial intelligence. It explores the impact of collaboration and interpersonal relationships among key scientists, such as McCulloch, Wiener, Pitts, and Rosenblatt, on the development of cybernetics and neural networks. It also discusses the contested attribution of credit for important innovations like the backpropagation algorithm and the potential consequences of unresolved debates within emerging scientific domains. It emphasizes how interpretive flexibility, public perception, and the influence of prominent figures can shape the trajectory of a new field. It highlights the role of funding, media attention, and alliances in determining the success and recognition of various research approaches. Additionally, it points out the missed opportunities for collaboration and integration between symbolic AI and neural network researchers, suggesting that a more unified approach may be possible in today's era without the historical baggage of past debates.


Vision for Bosnia and Herzegovina in Artificial Intelligence Age: Global Trends, Potential Opportunities, Selected Use-cases and Realistic Goals

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) is one of the most promising technologies of the 21. century, with an already noticeable impact on society and the economy. With this work, we provide a short overview of global trends, applications in industry and selected use-cases from our international experience and work in industry and academia. The goal is to present global and regional positive practices and provide an informed opinion on the realistic goals and opportunities for positioning B&H on the global AI scene.


The History of AI Rights Research

arXiv.org Artificial Intelligence

This report documents the history of research on AI rights and other moral consideration of artificial entities. It highlights key intellectual influences on this literature as well as research and academic discussion addressing the topic more directly. We find that researchers addressing AI rights have often seemed to be unaware of the work of colleagues whose interests overlap with their own. Academic interest in this topic has grown substantially in recent years; this reflects wider trends in academic research, but it seems that certain influential publications, the gradual, accumulating ubiquity of AI and robotic technology, and relevant news events may all have encouraged increased academic interest in this specific topic. We suggest four levers that, if pulled on in the future, might increase interest further: the adoption of publication strategies similar to those of the most successful previous contributors; increased engagement with adjacent academic fields and debates; the creation of specialized journals, conferences, and research institutions; and more exploration of legal rights for artificial entities.