Country
A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise
Fishbach, Alon, May, Bradford J.
Psychophysical data suggest that temporal modulations of stimulus amplitude envelopes play a prominent role in the perceptual segregation of concurrent sounds. In particular, the detection of an unmodulated signal can be significantly improved by adding amplitude modulation to the spectral envelope of a competing masking noise. This perceptual phenomenon is known as "Comodulation Masking Release" (CMR). Despite the obvious influence of temporal structure on the perception of complex auditory scenes, the physiological mechanisms that contribute to CMR and auditory streaming are not well known. A recent physiological study by Nelken and colleagues has demonstrated an enhanced cortical representation of auditory signals in modulated noise. Our study evaluates these CMR-like response patterns from the perspective of a hypothetical auditory edge-detection neuron. It is shown that this simple neural model for the detection of amplitude transients can reproduce not only the physiological data of Nelken et al., but also, in light of previous results, a variety of physiological and psychoacoustical phenomena that are related to the perceptual segregation of concurrent sounds.
Automatic Alignment of Local Representations
We present an automatic alignment procedure which maps the disparate internal representations learned by several local dimensionality reduction experts into a single, coherent global coordinate system for the original data space. Our algorithm can be applied to any set of experts, each of which produces a low-dimensional local representation of a highdimensional input. Unlike recent efforts to coordinate such models by modifying their objective functions [1, 2], our algorithm is invoked after training and applies an efficient eigensolver to post-process the trained models. The post-processing has no local optima and the size of the system it must solve scales with the number of local models rather than the number of original data points, making it more efficient than model-free algorithms such as Isomap [3] or LLE [4].
Identity Uncertainty and Citation Matching
Pasula, Hanna, Marthi, Bhaskara, Milch, Brian, Russell, Stuart J., Shpitser, Ilya
Identity uncertainty is a pervasive problem in real-world data analysis. It arises whenever objects are not labeled with unique identifiers or when those identifiers may not be perceived perfectly. In such cases, two observations may or may not correspond to the same object. In this paper, we consider the problem in the context of citation matching--the problem of deciding which citations correspond to the same publication. Our approach is based on the use of a relational probability model to define a generative model for the domain, including models of author and title corruption and a probabilistic citation grammar. Identity uncertainty is handled by extending standard models to incorporate probabilities over the possible mappings between terms in the language and objects in the domain. Inference is based on Markov chain Monte Carlo, augmented with specific methods for generating efficient proposals when the domain contains many objects. Results on several citation data sets show that the method outperforms current algorithms for citation matching. The declarative, relational nature of the model also means that our algorithm can determine object characteristics such as author names by combining multiple citations of multiple papers.
A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages
Malzahn, Dörthe, Opper, Manfred
We apply the replica method of Statistical Physics combined with a variational method to the approximate analytical computation of bootstrap averages for estimating the generalization error. We demonstrate our approach on regression with Gaussian processes and compare our results with averages obtained by Monte-Carlo sampling.
"Name That Song!" A Probabilistic Approach to Querying on Music and Text
Eric, Brochu, Freitas, Nando de
We present a novel, flexible statistical approach for modelling music and text jointly. The approach is based on multi-modal mixture models and maximum a posteriori estimation using EM. The learned models can be used to browse databases with documents containing music and text, to search for music using queries consisting of music and text (lyrics and other contextual information), to annotate text documents with music, and to automatically recommend or identify similar songs.
Theory-Based Causal Inference
Tenenbaum, Joshua B., Griffiths, Thomas L.
People routinely make sophisticated causal inferences unconsciously, effortlessly, and from very little data - often from just one or a few observations. We argue that these inferences can be explained as Bayesian computations over a hypothesis space of causal graphical models, shaped by strong top-down prior knowledge in the form of intuitive theories.
How to Combine Color and Shape Information for 3D Object Recognition: Kernels do the Trick
This paper presents a kernel method that allows to combine color and shape information for appearance-based object recognition. It doesn't require to define a new common representation, but use the power of kernels to combine different representations together in an effective manner. These results are achieved using results of statistical mechanics of spin glasses combined with Markov random fields via kernel functions. Experiments show an increase in recognition rate up to 5.92% with respect to conventional strategies.
On the Complexity of Learning the Kernel Matrix
Bousquet, Olivier, Herrmann, Daniel
We investigate data based procedures for selecting the kernel when learning with Support Vector Machines. We provide generalization error bounds by estimating the Rademacher complexities of the corresponding function classes. In particular we obtain a complexity bound for function classes induced by kernels with given eigenvectors, i.e., we allow to vary the spectrum and keep the eigenvectors fix. This bound is only a logarithmic factor bigger than the complexity of the function class induced by a single kernel. However, optimizing the margin over such classes leads to overfitting. We thus propose a suitable way of constraining the class. We use an efficient algorithm to solve the resulting optimization problem, present preliminary experimental results, and compare them to an alignment-based approach.
Learning a Forward Model of a Reflex
Porr, Bernd, Wörgötter, Florentin
We develop a systems theoretical treatment of a behavioural system that interacts with its environment in a closed loop situation such that its motor actions influence its sensor inputs. The simplest form of a feedback is a reflex. Reflexes occur always "too late"; i.e., only after a (unpleasant, painful, dangerous) reflex-eliciting sensor event has occurred. This defines an objective problem which can be solved if another sensor input exists which can predict the primary reflex and can generate an earlier reaction. In contrast to previous approaches, our linear learning algorithm allows for an analytical proof that this system learns to apply feedforward control with the result that slow feedback loops are replaced by their equivalent feed-forward controller creating a forward model. In other words, learning turns the reactive system into a proactive system. By means of a robot implementation we demonstrate the applicability of the theoretical results which can be used in a variety of different areas in physics and engineering.
Multiple Cause Vector Quantization
Ross, David A., Zemel, Richard S.
We propose a model that can learn parts-based representations of highdimensional data. Our key assumption is that the dimensions of the data can be separated into several disjoint subsets, or factors, which take on values independently of each other. We assume each factor has a small number of discrete states, and model it using a vector quantizer. The selected states of each factor represent the multiple causes of the input. Given a set of training examples, our model learns the association of data dimensions with factors, as well as the states of each VQ. Inference and learning are carried out efficiently via variational algorithms.