Goto

Collaborating Authors

 Country


Beyond Maximum Likelihood: from Theory to Practice

arXiv.org Machine Learning

Maximum likelihood is the most widely used statistical estimation technique. Recent work by the authors introduced a general methodology for the construction of estimators for functionals in parametric models, and demonstrated improvements - both in theory and in practice - over the maximum likelihood estimator (MLE), particularly in high dimensional scenarios involving parameter dimension comparable to or larger than the number of samples. This approach to estimation, building on results from approximation theory, is shown to yield minimax rate-optimal estimators for a wide class of functionals, implementable with modest computational requirements. In a nutshell, a message of this recent work is that, for a wide class of functionals, the performance of these essentially optimal estimators with $n$ samples is comparable to that of the MLE with $n \ln n$ samples. In the present paper, we highlight the applicability of the aforementioned methodology to statistical problems beyond functional estimation, and show that it can yield substantial gains. For example, we demonstrate that for learning tree-structured graphical models, our approach achieves a significant reduction of the required data size compared with the classical Chow--Liu algorithm, which is an implementation of the MLE, to achieve the same accuracy. The key step in improving the Chow--Liu algorithm is to replace the empirical mutual information with the estimator for mutual information proposed by the authors. Further, applying the same replacement approach to classical Bayesian network classification, the resulting classifiers uniformly outperform the previous classifiers on 26 widely used datasets.


Autoencoder Trees

arXiv.org Machine Learning

We discuss an autoencoder model in which the encoding and decoding functions are implemented by decision trees. We use the soft decision tree where internal nodes realize soft multivariate splits given by a gating function and the overall output is the average of all leaves weighted by the gating values on their path. The encoder tree takes the input and generates a lower dimensional representation in the leaves and the decoder tree takes this and reconstructs the original input. Exploiting the continuity of the trees, autoencoder trees are trained with stochastic gradient descent. On handwritten digit and news data, we see that the autoencoder trees yield good reconstruction error compared to traditional autoencoder perceptrons. We also see that the autoencoder tree captures hierarchical representations at different granularities of the data on its different levels and the leaves capture the localities in the input space.


Identification of jump Markov linear models using particle filters

arXiv.org Machine Learning

Jump Markov linear models consists of a finite number of linear state space models and a discrete variable encoding the jumps (or switches) between the different linear models. Identifying jump Markov linear models makes for a challenging problem lacking an analytical solution. We derive a new expectation maximization (EM) type algorithm that produce maximum likelihood estimates of the model parameters. Our development hinges upon recent progress in combining particle filters with Markov chain Monte Carlo methods in solving the nonlinear state smoothing problem inherent in the EM formulation. Key to our development is that we exploit a conditionally linear Gaussian substructure in the model, allowing for an efficient algorithm.


Community Detection in Sparse Random Networks

arXiv.org Machine Learning

We consider the problem of detecting a tight community in a sparse random network. This is formalized as testing for the existence of a dense random subgraph in a random graph. Under the null hypothesis, the graph is a realization of an Erd\"os-R\'enyi graph on $N$ vertices and with connection probability $p_0$; under the alternative, there is an unknown subgraph on $n$ vertices where the connection probability is p1 > p0. In Arias-Castro and Verzelen (2012), we focused on the asymptotically dense regime where p0 is large enough that np0>(n/N)^{o(1)}. We consider here the asymptotically sparse regime where p0 is small enough that np0<(n/N)^{c0} for some c0>0. As before, we derive information theoretic lower bounds, and also establish the performance of various tests. Compared to our previous work, the arguments for the lower bounds are based on the same technology, but are substantially more technical in the details; also, the methods we study are different: besides a variant of the scan statistic, we study other statistics such as the size of the largest connected component, the number of triangles, the eigengap of the adjacency matrix, etc. Our detection bounds are sharp, except in the Poisson regime where we were not able to fully characterize the constant arising in the bound.


Unsupervised learning of regression mixture models with unknown number of components

arXiv.org Machine Learning

Regression mixture models are widely studied in statistics, machine learning and data analysis. Fitting regression mixtures is challenging and is usually performed by maximum likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the initialization is crucial for EM. If the initialization is inappropriately performed, the EM algorithm may lead to unsatisfactory results. The EM algorithm also requires the number of clusters to be given a priori; the problem of selecting the number of mixture components requires using model selection criteria to choose one from a set of pre-estimated candidate models. We propose a new fully unsupervised algorithm to learn regression mixture models with unknown number of components. The developed unsupervised learning approach consists in a penalized maximum likelihood estimation carried out by a robust expectation-maximization (EM) algorithm for fitting polynomial, spline and B-spline regressions mixtures. The proposed learning approach is fully unsupervised: 1) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and 2) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated data show that the proposed robust EM algorithm performs well and provides accurate results in terms of robustness with regard initialization and retrieving the optimal partition with the actual number of clusters. An application to real data in the framework of functional data clustering, confirms the benefit of the proposed approach for practical applications.


Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach

arXiv.org Machine Learning

We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality---and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.


Variational Pseudolikelihood for Regularized Ising Inference

arXiv.org Machine Learning

I propose a variational approach to maximum pseudolikelihood inference of the Ising model. The variational algorithm is more computationally efficient, and does a better job predicting out-of-sample correlations than $L_2$ regularized maximum pseudolikelihood inference as well as mean field and isolated spin pair approximations with pseudocount regularization. The key to the approach is a variational energy that regularizes the inference problem by shrinking the couplings towards zero, while still allowing some large couplings to explain strong correlations. The utility of the variational pseudolikelihood approach is illustrated by training an Ising model to represent the letters A-J using samples of letters from different computer fonts.


Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version

arXiv.org Machine Learning

Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.


Local case-control sampling: Efficient subsampling in imbalanced data sets

arXiv.org Machine Learning

For classification problems with significant class imbalance, subsampling can reduce computational costs at the price of inflated variance in estimating model parameters. We propose a method for subsampling efficiently for logistic regression by adjusting the class balance locally in feature space via an accept-reject scheme. Our method generalizes standard case-control sampling, using a pilot estimate to preferentially select examples whose responses are conditionally rare given their features. The biased subsampling is corrected by a post-hoc analytic adjustment to the parameters. The method is simple and requires one parallelizable scan over the full data set. Standard case-control sampling is inconsistent under model misspecification for the population risk-minimizing coefficients $\theta^*$. By contrast, our estimator is consistent for $\theta^*$ provided that the pilot estimate is. Moreover, under correct specification and with a consistent, independent pilot estimate, our estimator has exactly twice the asymptotic variance of the full-sample MLE - even if the selected subsample comprises a miniscule fraction of the full data set, as happens when the original data are severely imbalanced. The factor of two improves to $1+\frac{1}{c}$ if we multiply the baseline acceptance probabilities by $c>1$ (and weight points with acceptance probability greater than 1), taking roughly $\frac{1+c}{2}$ times as many data points into the subsample. Experiments on simulated and real data show that our method can substantially outperform standard case-control subsampling.


Distributed Clustering and Learning Over Networks

arXiv.org Machine Learning

Distributed processing over networks relies on in-network processing and cooperation among neighboring agents. Cooperation is beneficial when agents share a common objective. However, in many applications agents may belong to different clusters that pursue different objectives. Then, indiscriminate cooperation will lead to undesired results. In this work, we propose an adaptive clustering and learning scheme that allows agents to learn which neighbors they should cooperate with and which other neighbors they should ignore. In doing so, the resulting algorithm enables the agents to identify their clusters and to attain improved learning and estimation accuracy over networks. We carry out a detailed mean-square analysis and assess the error probabilities of Types I and II, i.e., false alarm and mis-detection, for the clustering mechanism. Among other results, we establish that these probabilities decay exponentially with the step-sizes so that the probability of correct clustering can be made arbitrarily close to one.