Goto

Collaborating Authors

 Country


A general framework for investigating how far the decoding process in the brain can be simplified

Neural Information Processing Systems

``How is information decoded in the brain?'' is one of the most difficult and important questions in neuroscience. Whether neural correlation is important or not in decoding neural activities is of special interest. We have developed a general framework for investigating how far the decoding process in the brain can be simplified. First, we hierarchically construct simplified probabilistic models of neural responses that ignore more than $K$th-order correlations by using a maximum entropy principle. Then, we compute how much information is lost when information is decoded using the simplified models, i.e., ``mismatched decoders''. We introduce an information theoretically correct quantity for evaluating the information obtained by mismatched decoders. We applied our proposed framework to spike data for vertebrate retina. We used 100-ms natural movies as stimuli and computed the information contained in neural activities about these movies. We found that the information loss is negligibly small in population activities of ganglion cells even if all orders of correlation are ignored in decoding. We also found that if we assume stationarity for long durations in the information analysis of dynamically changing stimuli like natural movies, pseudo correlations seem to carry a large portion of the information.


Exact Convex Confidence-Weighted Learning

Neural Information Processing Systems

Confidence-weighted (CW) learning [6], an online learning method for linear classifiers, maintains a Gaussian distributions over weight vectors, with a covariance matrix that represents uncertainty about weights and correlations. Confidence constraints ensure that a weight vector drawn from the hypothesis distribution correctly classifies examples with a specified probability. Within this framework, we derive a new convex form of the constraint and analyze it in the mistake bound model. Empirical evaluation with both synthetic and text data shows our version of CW learning achieves lower cumulative and out-of-sample errors than commonly used first-order and second-order online methods.


Adapting to a Market Shock: Optimal Sequential Market-Making

Neural Information Processing Systems

We study the profit-maximization problem of a monopolistic market-maker who sets two-sided prices in an asset market. The sequential decision problem is hard to solve because the state space is a function. We demonstrate that the belief state is well approximated by a Gaussian distribution. We prove a key monotonicity property of the Gaussian state update which makes the problem tractable, yielding the first optimal sequential market-making algorithm in an established model. The algorithm leads to a surprising insight: an optimal monopolist can provide more liquidity than perfectly competitive market-makers in periods of extreme uncertainty, because a monopolist is willing to absorb initial losses in order to learn a new valuation rapidly so she can extract higher profits later.


Bayesian Model of Behaviour in Economic Games

Neural Information Processing Systems

Classical Game Theoretic approaches that make strong rationality assumptions have difficulty modeling observed behaviour in Economic games of human subjects. We investigate the role of finite levels of iterated reasoning and non-selfish utility functions in a Partially Observable Markov Decision Process model that incorporates Game Theoretic notions of interactivity. Our generative model captures a broad class of characteristic behaviours in a multi-round Investment game. We invert the generative process for a recognition model that is used to classify 200 subjects playing an Investor-Trustee game against randomly matched opponents.


Stress, noradrenaline, and realistic prediction of mouse behaviour using reinforcement learning

Neural Information Processing Systems

Suppose we train an animal in a conditioning experiment. Can one predict how a given animal, under given experimental conditions, would perform the task? Since various factors such as stress, motivation, genetic background, and previous errors in task performance can influence animal behaviour, this appears to be a very challenging aim. Reinforcement learning (RL) models have been successful in modeling animal (and human) behaviour, but their success has been limited because of uncertainty as to how to set meta-parameters (such as learning rate, exploitation-exploration balance and future reward discount factor) that strongly influence model performance. We show that a simple RL model whose metaparameters are controlled by an artificial neural network, fed with inputs such as stress, affective phenotype, previous task performance, and even neuromodulatory manipulations, can successfully predict mouse behaviour in the "hole-box" - a simple conditioning task. Our results also provide important insights on how stress and anxiety affect animal learning, performance accuracy, and discounting of future rewards, and on how noradrenergic systems can interact with these processes.


Multi-Label Prediction via Compressed Sensing

Neural Information Processing Systems

We consider multi-label prediction problems with large output spaces under the assumption of output sparsity - that the target (label) vectors have small support. We develop a general theory for a variant of the popular error correcting output code scheme, using ideas from compressed sensing for exploiting this sparsity. The method can be regarded as a simple reduction from multi-label regression problems to binary regression problems. We show that the number of subproblems need only be logarithmic in the total number of possible labels, making this approach radically more efficient than others. We also state and prove robustness guarantees for this method in the form of regret transform bounds (in general), and also provide a more detailed analysis for the linear prediction setting.


Learning Transformational Invariants from Natural Movies

Neural Information Processing Systems

We describe a hierarchical, probabilistic model that learns to extract complex motion from movies of the natural environment. The model consists of two hidden layers: the first layer produces a sparse representation of the image that is expressed in terms of local amplitude and phase variables. The second layer learns the higher-order structure among the time-varying phase variables. After training on natural movies, the top layer units discover the structure of phase-shifts within the first layer.


Translated Learning: Transfer Learning across Different Feature Spaces

Neural Information Processing Systems

This paper investigates a new machine learning strategy called translated learning. Unlike many previous learning tasks, we focus on how to use labeled data from one feature space to enhance the classification of other entirely different learning spaces. For example, we might wish to use labeled text data to help learn a model for classifying image data, when the labeled images are difficult to obtain. An important aspect of translated learning is to build a "bridge" to link one feature space (known as the "source space") to another space (known as the "target space") through a translator in order to migrate the knowledge from source to target. The translated learning solution uses a language model to link the class labels to the features in the source spaces, which in turn is translated to the features in the target spaces. Finally, this chain of linkages is completed by tracing back to the instances in the target spaces. We show that this path of linkage can be modeled using a Markov chain and risk minimization. Through experiments on the text-aided image classification and cross-language classification tasks, we demonstrate that our translated learning framework can greatly outperform many state-of-the-art baseline methods.


Generative versus discriminative training of RBMs for classification of fMRI images

Neural Information Processing Systems

Neuroimaging datasets often have a very large number of voxels and a very small number of training cases, which means that overfitting of models for this data can become a very serious problem. Working with a set of fMRI images from a study on stroke recovery, we consider a classification task for which logistic regression performs poorly, even when L1-or L2-regularized. We show that much better discrimination can be achieved by fitting a generative model to each separate condition and then seeing which model is most likely to have generated the data. We compare discriminative training of exactly the same set of models, and we also consider convex blends of generative and discriminative training.


Extracting State Transition Dynamics from Multiple Spike Trains with Correlated Poisson HMM

Neural Information Processing Systems

Neural activity is non-stationary and varies across time. Hidden Markov Models (HMMs) have been used to track the state transition among quasi-stationary discrete neural states. Within this context, independent Poisson models have been used for the output distribution of HMMs; hence, the model is incapable of tracking the change in correlation without modulating the firing rate. To achieve this, we applied a multivariate Poisson distribution with correlation terms for the output distribution of HMMs. We formulated a Variational Bayes (VB) inference for the model. The VB could automatically determine the appropriate number of hidden states and correlation types while avoiding the overlearning problem. We developed an efficient algorithm for computing posteriors using the recursive relationship of a multivariate Poisson distribution. We demonstrated the performance of our method on synthetic data and a real spike train recorded from a songbird.