Country
Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory
Pashler, Harold, Cepeda, Nicholas, Lindsey, Robert V., Vul, Ed, Mozer, Michael C.
When individuals learn facts (e.g., foreign language vocabulary) over multiple study sessions, the temporal spacing of study has a significant impact on memory retention. Behavioral experiments have shown a nonmonotonic relationship between spacing and retention: short or long intervals between study sessions yield lower cued-recall accuracy than intermediate intervals. Appropriate spacing of study can double retention on educationally relevant time scales. We introduce a Multiscale Context Model (MCM) that is able to predict the influence of a particular study schedule on retention for specific material. MCMs prediction is based on empirical data characterizing forgetting of the material following a single study session. MCM is a synthesis of two existing memory models (Staddon, Chelaru, & Higa, 2002; Raaijmakers, 2003). On the surface, these models are unrelated and incompatible, but we show they share a core feature that allows them to be integrated. MCM can determine study schedules that maximize the durability of learning, and has implications for education and training. MCM can be cast either as a neural network with inputs that fluctuate over time, or as a cascade of leaky integrators. MCM is intriguingly similar to a Bayesian multiscale model of memory (Kording, Tenenbaum, Shadmehr, 2007), yet MCM is better able to account for human declarative memory.
Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing
Rangan, Sundeep, Goyal, Vivek, Fletcher, Alyson K.
The replica method is a non-rigorous but widely-used technique from statistical physics used in the asymptotic analysis of many large random nonlinear problems. This paper applies the replica method to non-Gaussian MAP estimation. It is shown that with large random linear measurements and Gaussian noise, the asymptotic behavior of the MAP estimate of an n-dimensional vector ``decouples as n scalar MAP estimators. The result is a counterpart to Guo and Verdus replica analysis on MMSE estimation. The replica MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding and zero-norm estimation. In the case of lasso estimation, the scalar estimator reduces to a soft-thresholding operator and for zero-norm estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally tractable method for exactly computing various performance metrics including MSE and sparsity recovery.
Using Bayesian Dynamical Systems for Motion Template Libraries
Chiappa, Silvia, Kober, Jens, Peters, Jan R.
Motor primitives or motion templates have become an important concept for both modeling human motor control as well as generating robot behaviors using imitation learning. Recent impressive results range from humanoid robot movement generation to timing models of human motions. The automatic generation of skill libraries containing multiple motion templates is an important step in robot learning. Such a skill learning system needs to cluster similar movements together and represent each resulting motion template as a generative model which is subsequently used for the execution of the behavior by a robot system. In this paper, we show how human trajectories captured as multidimensional time-series can be clustered using Bayesian mixtures of linear Gaussian state-space models based on the similarity of their dynamics. The appropriate number of templates is automatically determined by enforcing a parsimonious parametrization. As the resulting model is intractable, we introduce a novel approximation method based on variational Bayes, which is especially designed to enable the use of efficient inference algorithms. On recorded human Balero movements, this method is not only capable of finding reasonable motion templates but also yields a generative model which works well in the execution of this complex task on a simulated anthropomorphic SARCOS arm.
Sparse Signal Recovery Using Markov Random Fields
Cevher, Volkan, Duarte, Marco F., Hegde, Chinmay, Baraniuk, Richard
Compressive Sensing (CS) combines sampling and compression into a single sub-Nyquist linear measurement process for sparse and compressible signals. In this paper, we extend the theory of CS to include signals that are concisely represented in terms of a graphical model. In particular, we use Markov Random Fields (MRFs) to represent sparse signals whose nonzero coefficients are clustered. Our new model-based reconstruction algorithm, dubbed Lattice Matching Pursuit (LaMP), stably recovers MRF-modeled signals using many fewer measurements and computations than the current state-of-the-art algorithms.
Fast High-dimensional Kernel Summations Using the Monte Carlo Multipole Method
Lee, Dongryeol, Gray, Alexander G.
We propose a new fast Gaussian summation algorithm for high-dimensional datasets with high accuracy. First, we extend the original fast multipole-type methods to use approximation schemes with both hard and probabilistic error. Second, we utilize a new data structure called subspace tree which maps each data point in the node to its lower dimensional mapping as determined by any linear dimension reduction method such as PCA. This new data structure is suitable for reducing the cost of each pairwise distance computation, the most dominant cost in many kernel methods. Our algorithm guarantees probabilistic relative error on each kernel sum, and can be applied to high-dimensional Gaussian summations which are ubiquitous inside many kernel methods as the key computational bottleneck. We provide empirical speedup results on low to high-dimensional datasets up to 89 dimensions.
DUOL: A Double Updating Approach for Online Learning
Zhao, Peilin, Hoi, Steven C., Jin, Rong
In most online learning algorithms, the weights assigned to the misclassified examples (or support vectors) remain unchanged during the entire learning process. This is clearly insufficient since when a new misclassified example is added to the pool of support vectors, we generally expect it to affect the weights for the existing support vectors. In this paper, we propose a new online learning method, termed Double Updating Online Learning", or "DUOL" for short. Instead of only assigning a fixed weight to the misclassified example received in current trial, the proposed online learning algorithm also tries to update the weight for one of the existing support vectors. We show that the mistake bound can be significantly improved by the proposed online learning method. Encouraging experimental results show that the proposed technique is in general considerably more effective than the state-of-the-art online learning algorithms."
Breaking Audio CAPTCHAs
Tam, Jennifer, Simsa, Jiri, Hyde, Sean, Ahn, Luis V.
CAPTCHAs are computer-generated tests that humans can pass but current computer systems cannot. CAPTCHAs provide a method for automatically distinguishing a human from a computer program, and therefore can protect Web services from abuse by so-called "bots." Most CAPTCHAs consist of distorted images, usually text, for which a user must provide some description. Unfortunately, visual CAPTCHAs limit access to the millions of visually impaired people using the Web. Audio CAPTCHAs were created to solve this accessibility issue; however, the security of audio CAPTCHAs was never formally tested.
Multi-resolution Exploration in Continuous Spaces
Nouri, Ali, Littman, Michael L.
The essence of exploration is acting to try to decrease uncertainty. We propose a new methodology for representing uncertainty in continuous-state control problems. Our approach, multi-resolution exploration (MRE), uses a hierarchical mapping to identify regions of the state space that would benefit from additional samples. We demonstrate MRE's broad utility by using it to speed up learning in a prototypical model-based and value-based reinforcement-learning method. Empirical results show that MRE improves upon state-of-the-art exploration approaches.
Model selection and velocity estimation using novel priors for motion patterns
Wu, Shuang, Lu, Hongjing, Yuille, Alan L.
Psychophysical experiments show that humans are better at perceiving rotation and expansion than translation. These findings are inconsistent with standard models of motion integration which predict best performance for translation [6]. To explain this discrepancy, our theory formulates motion perception at two levels of inference: we first perform model selection between the competing models (e.g. translation, rotation, and expansion) and then estimate the velocity using the selected model. We define novel prior models for smooth rotation and expansion using techniques similar to those in the slow-and-smooth model [17] (e.g. Green functions of differential operators). The theory gives good agreement with the trends observed in human experiments.
Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation
Watanabe, Yusuke, Fukumizu, Kenji
We propose a new approach to the analysis of Loopy Belief Propagation (LBP) by establishing a formula that connects the Hessian of the Bethe free energy with the edge zeta function. The formula has a number of theoretical implications on LBP. It is applied to give a sufficient condition that the Hessian of the Bethe free energy is positive definite, which shows non-convexity for graphs with multiple cycles. The formula clarifies the relation between the local stability of a fixed point of LBP and local minima of the Bethe free energy. We also propose a new approach to the uniqueness of LBP fixed point, and show various conditions of uniqueness.