Country
A Novel Kernel for Learning a Neuron Model from Spike Train Data
Fisher, Nicholas, Banerjee, Arunava
From a functional viewpoint, a spiking neuron is a device that transforms input spike trains on its various synapses into an output spike train on its axon. We demonstrate in this paper that the function mapping underlying the device can be tractably learned based on input and output spike train data alone. We begin by posing the problem in a classification based framework. We then derive a novel kernel for an SRM0 model that is based on PSP and AHP like functions. With the kernel we demonstrate how the learning problem can be posed as a Quadratic Program. Experimental results demonstrate the strength of our approach.
Large Margin Multi-Task Metric Learning
Parameswaran, Shibin, Weinberger, Kilian Q.
Multi-task learning (MTL) improves the prediction performance on multiple, different but related, learning problems through shared parameters or representations. One of the most prominent multi-task learning algorithms is an extension to svms by Evgeniou et al. Although very elegant, multi-task svm is inherently restricted by the fact that support vector machines require each class to be addressed explicitly with its own weight vector which, in a multi-task setting, requires the different learning tasks to share the same set of classes. This paper proposes an alternative formulation for multi-task learning by extending the recently published large margin nearest neighbor (lmnn) algorithm to the MTL paradigm. Instead of relying on separating hyperplanes, its decision function is based on the nearest neighbor rule which inherently extends to many classes and becomes a natural fit for multitask learning. We evaluate the resulting multi-task lmnn on real-world insurance data and speech classification problems and show that it consistently outperforms single-task kNN under several metrics and state-of-the-art MTL classifiers.
Active Learning Applied to Patient-Adaptive Heartbeat Classification
While clinicians can accurately identify different types of heartbeats in electrocardiograms (ECGs) from different patients, researchers have had limited success in applying supervised machine learning to the same task. The problem is made challenging by the variety of tasks, inter- and intra-patient differences, an often severe class imbalance, and the high cost of getting cardiologists to label data for individual patients. We address these difficulties using active learning to perform patient-adaptive and task-adaptive heartbeat classification. When tested on a benchmark database of cardiologist annotated ECG recordings, our method had considerably better performance than other recently proposed methods on the two primary classification tasks recommended by the Association for the Advancement of Medical Instrumentation. Additionally, our method required over 90% less patient-specific training data than the methods to which we compared it.
Inference and communication in the game of Password
Communication between a speaker and hearer will be most efficient when both parties make accurate inferences about the other. We study inference and communication in a television game called Password, where speakers must convey secret words to hearers by providing one-word clues. Our working hypothesis is that human communication is relatively efficient, and we use game show data to examine three predictions. First, we predict that speakers and hearers are both considerate, and that both take the other's perspective into account. Second, we predict that speakers and hearers are calibrated, and that both make accurate assumptions about the strategy used by the other. Finally, we predict that speakers and hearers are collaborative, and that they tend to share the cognitive burden of communication equally. We find evidence in support of all three predictions, and demonstrate in addition that efficient communication tends to break down when speakers and hearers are placed under time pressure.
Boosting Classifier Cascades
Vasconcelos, Nuno, Saberian, Mohammad J.
The problem of optimal and automatic design of a detector cascade is considered. A novel mathematical model is introduced for a cascaded detector. This model is analytically tractable, leads to recursive computation, and accounts for both classification and complexity. A boosting algorithm, FCBoost, is proposed for fully automated cascade design. It exploits the new cascade model, minimizes a Lagrangian cost that accounts for both classification risk and complexity. It searches the space of cascade configurations to automatically determine the optimal number of stages and their predictors, and is compatible with bootstrapping of negative examples and cost sensitive learning. Experiments show that the resulting cascades have state-of-the-art performance in various computer vision problems.
Supervised Clustering
Awasthi, Pranjal, Zadeh, Reza B.
Despite the ubiquity of clustering as a tool in unsupervised learning, there is not yet a consensus on a formal theory, and the vast majority of work in this direction has focused on unsupervised clustering. We study a recently proposed framework for supervised clustering where there is access to a teacher. We give an improved generic algorithm to cluster any concept class in that model. Our algorithm is query-efficient in the sense that it involves only a small amount of interaction with the teacher. We also present and study two natural generalizations of the model. The model assumes that the teacher response to the algorithm is perfect. We eliminate this limitation by proposing a noisy model and give an algorithm for clustering the class of intervals in this noisy model. We also propose a dynamic model where the teacher sees a random subset of the points. Finally, for datasets satisfying a spectrum of weak to strong properties, we give query bounds, and show that a class of clustering functions containing Single-Linkage will find the target clustering under the strongest property.
LSTD with Random Projections
Ghavamzadeh, Mohammad, Lazaric, Alessandro, Maillard, Odalric, Munos, Rรฉmi
We consider the problem of reinforcement learning in high-dimensional spaces when the number of features is bigger than the number of samples. In particular, we study the least-squares temporal difference (LSTD) learning algorithm when a space of low dimension is generated with a random projection from a high-dimensional space. We provide a thorough theoretical analysis of the LSTD with random projections and derive performance bounds for the resulting algorithm. We also show how the error of LSTD with random projections is propagated through the iterations of a policy iteration algorithm and provide a performance bound for the resulting least-squares policy iteration (LSPI) algorithm.
Random Projection Trees Revisited
The Random Projection Tree (RPTree) structures proposed in [Dasgupta-Freund-STOC-08] are space partitioning data structures that automatically adapt to various notions of intrinsic dimensionality of data. We prove new results for both the RPTree-Max and the RPTree-Mean data structures. Our result for RPTree-Max gives a near-optimal bound on the number of levels required by this data structure to reduce the size of its cells by a factor s >= 2. We also prove a packing lemma for this data structure. Our final result shows that low-dimensional manifolds possess bounded Local Covariance Dimension. As a consequence we show that RPTree-Mean adapts to manifold dimension as well.
Sparse Coding for Learning Interpretable Spatio-Temporal Primitives
Kim, Taehwan, Shakhnarovich, Gregory, Urtasun, Raquel
Sparse coding has recently become a popular approach in computer vision to learn dictionaries of natural images. In this paper we extend sparse coding to learn interpretable spatio-temporal primitives of human motion. We cast the problem of learning spatio-temporal primitives as a tensor factorization problem and introduce constraints to learn interpretable primitives. In particular, we use group norms over those tensors, diagonal constraints on the activations as well as smoothness constraints that are inherent to human motion. We demonstrate the effectiveness of our approach to learn interpretable representations of human motion from motion capture data, and show that our approach outperforms recently developed matching pursuit and sparse coding algorithms.
A Reduction from Apprenticeship Learning to Classification
Syed, Umar, Schapire, Robert E.
We provide new theoretical results for apprenticeship learning, a variant of reinforcement learning in which the true reward function is unknown, and the goal is to perform well relative to an observed expert. We study a common approach to learning from expert demonstrations: using a classification algorithm to learn to imitate the expert's behavior. Although this straightforward learning strategy is widely-used in practice, it has been subject to very little formal analysis. We prove that, if the learned classifier has error rate $\eps$, the difference between the value of the apprentice's policy and the expert's policy is $O(\sqrt{\eps})$. Further, we prove that this difference is only $O(\eps)$ when the expert's policy is close to optimal. This latter result has an important practical consequence: Not only does imitating a near-optimal expert result in a better policy, but far fewer demonstrations are required to successfully imitate such an expert. This suggests an opportunity for substantial savings whenever the expert is known to be good, but demonstrations are expensive or difficult to obtain.