Goto

Collaborating Authors

 Country


Some Theoretical Results Concerning the Convergence of Compositions of Regularized Linear Functions

Neural Information Processing Systems

Recently, sample complexity bounds have been derived for problems involving linear functions such as neural networks and support vector machines. In this paper, we extend some theoretical results in this area by deriving dimensional independent covering number bounds for regularized linear functions under certain regularization conditions. We show that such bounds lead to a class of new methods for training linear classifiers with similar theoretical advantages of the support vector machine. Furthermore, we also present a theoretical analysis for these new methods from the asymptotic statistical point of view. This technique provides better description for large sample behaviors of these algorithms.



Manifold Stochastic Dynamics for Bayesian Learning

Neural Information Processing Systems

We propose a new Markov Chain Monte Carlo algorithm which is a generalization of the stochastic dynamics method. The algorithm performs exploration of the state space using its intrinsic geometric structure, facilitating efficient sampling of complex distributions. Applied to Bayesian learning in neural networks, our algorithm was found to perform at least as well as the best state-of-the-art method while consuming considerably less time. 1 Introduction


Topographic Transformation as a Discrete Latent Variable

Neural Information Processing Systems

A very small amount of shearing will move the point only slightly, so deforming the object by shearing will trace a continuous curve in the space of pixel intensities. As illustrated in Fig. la, extensive levels of shearing will produce a highly nonlinear curve (consider shearing a thin vertical line), although the curve can be approximated by a straight line locally. Linear approximations of the transformation manifold have been used to significantly improve the performance of feedforward discriminative classifiers such as nearest neighbors (Simard et al., 1993) and multilayer perceptrons (Simard et al., 1992). Linear generative models (factor analysis, mixtures of factor analysis) have also been modified using linear approximations of the transformation manifold to build in some degree of transformation invariance (Hinton et al., 1997). In general, the linear approximation is accurate for transformations that couple neighboring pixels, but is inaccurate for transformations that couple nonneighboring pixels. In some applications (e.g., handwritten digit recognition), the input can be blurred so that the linear approximation becomes more robust. For significant levels of transformation, the nonlinear manifold can be better modeled using a discrete approximation. For example, the curve in Figure 1a can be 478 N. Jojic and B. J. Frey


Broadband Direction-Of-Arrival Estimation Based on Second Order Statistics

Neural Information Processing Systems

N wideband sources recorded using N closely spaced receivers can feasibly be separated based only on second order statistics when using a physical model of the mixing process. In this case we show that the parameter estimation problem can be essentially reduced to considering directions of arrival and attenuations of each signal. The paper presents two demixing methods operating in the time and frequency domain and experimentally shows that it is always possible to demix signals arriving at different angles. Moreover, one can use spatial cues to solve the channel selection problem and a post-processing Wiener filter to ameliorate the artifacts caused by demixing.


A Multi-class Linear Learning Algorithm Related to Winnow

Neural Information Processing Systems

In this paper, we present Committee, a new multi-class learning algorithm related to the Winnow family of algorithms. Committee is an algorithm for combining the predictions of a set of sub-experts in the online mistake-bounded model oflearning. A sub-expert is a special type of attribute that predicts with a distribution over a finite number of classes. Committee learns a linear function of sub-experts and uses this function to make class predictions. We provide bounds for Committee that show it performs well when the target can be represented by a few relevant sub-experts. We also show how Committee can be used to solve more traditional problems composed of attributes. This leads to a natural extension that learns on multi-class problems that contain both traditional attributes and sub-experts.


Predictive App roaches for Choosing Hyperparameters in Gaussian Processes

Neural Information Processing Systems

Gaussian Processes are powerful regression models specified by parametrized mean and covariance functions. Standard approaches to estimate these parameters (known by the name Hyperparameters) are Maximum Likelihood (ML) and Maximum APosterior (MAP) approaches. In this paper, we propose and investigate predictive approaches, namely, maximization of Geisser's Surrogate Predictive Probability (GPP) and minimization of mean square error with respect to GPP (referred to as Geisser's Predictive mean square Error (GPE)) to estimate the hyperparameters. We also derive results for the standard Cross-Validation (CV) error and make a comparison. These approaches are tested on a number of problems and experimental results show that these approaches are strongly competitive to existing approaches. 1 Introduction Gaussian Processes (GPs) are powerful regression models that have gained popularity recently, though they have appeared in different forms in the literature for years.


Coastal Navigation with Mobile Robots

Neural Information Processing Systems

The problem that we address in this paper is how a mobile robot can plan in order to arrive at its goal with minimum uncertainty. Traditional motion planning algorithms often assume that a mobile robot can track its position reliably, however, in real world situations, reliable localization may not always be feasible. Partially Observable Markov Decision Processes (POMDPs) provide one way to maximize the certainty of reaching the goal state, but at the cost of computational intractability for large state spaces. The method we propose explicitly models the uncertainty of the robot's position as a state variable, and generates trajectories through the augmented pose-uncertainty space. By minimizing the positional uncertainty at the goal, the robot reduces the likelihood it becomes lost. We demonstrate experimentally that coastal navigation reduces the uncertainty at the goal, especially with degraded localization.


An Improved Decomposition Algorithm for Regression Support Vector Machines

Neural Information Processing Systems

The Karush-Kuhn-Tucker Theorem is used to derive conditions for determining whether or not a given working set is optimal. These conditions become the algorithm)s termination criteria) as an alternative to Osuna)s criteria (also used by Joachims without modification) which used conditions for individual points. The advantage of the new conditions is that knowledge of the hyperplane)s constant factor b) which in some cases is difficult to compute) is not required. Further investigation of the new termination conditions allows to form the strategy for selecting an optimal working set. The new algorithm is applicable to the pattern recognition SVM) and is provably equivalent to Joachims) algorithm. One can also interpret the new algorithm in the sense of the method of feasible directions. Experimental results presented in the last section demonstrate superior performance of the new method in comparison with traditional training of regression SVM. 2 General Principles of Regression SVM Decomposition The original decomposition algorithm proposed for the pattern recognition SVM in [2] has been extended to the regression SVM in [4]. For the sake of completeness I will repeat the main steps of this extension with the aim of providing terse and streamlined notation to lay the ground for working set selection.


Semiparametric Approach to Multichannel Blind Deconvolution of Nonminimum Phase Systems

Neural Information Processing Systems

In this paper we discuss the semi parametric statistical model for blind deconvolution. First we introduce a Lie Group to the manifold of noncausal FIR filters. Then blind deconvolution problem is formulated in the framework of a semiparametric model, and a family of estimating functions is derived for blind deconvolution. A natural gradient learning algorithm is developed for training noncausal filters. Stability of the natural gradient algorithm is also analyzed in this framework.