Country
Graph Construction for Learning with Unbalanced Data
Qian, Jing, Saligrama, Venkatesh, Zhao, Manqi
Unbalanced data arises in many learning tasks such as clustering of multi-class data, hierarchical divisive clustering and semisupervised learning. Graph-based approaches are popular tools for these problems. Graph construction is an important aspect of graph-based learning. We show that graph-based algorithms can fail for unbalanced data for many popular graphs such as k-NN, \epsilon-neighborhood and full-RBF graphs. We propose a novel graph construction technique that encodes global statistical information into node degrees through a ranking scheme. The rank of a data sample is an estimate of its p-value and is proportional to the total number of data samples with smaller density. This ranking scheme serves as a surrogate for density; can be reliably estimated; and indicates whether a data sample is close to valleys/modes. This rank-modulated degree(RMD) scheme is able to significantly sparsify the graph near valleys and provides an adaptive way to cope with unbalanced data. We then theoretically justify our method through limit cut analysis. Unsupervised and semi-supervised experiments on synthetic and real data sets demonstrate the superiority of our method.
Asynchronous Stochastic Approximation with Differential Inclusions
Perkins, Steven, Leslie, David S.
The asymptotic pseudo-trajectory approach to stochastic approximation of Benaim, Hofbauer and Sorin is extended for asynchronous stochastic approximations with a set-valued mean field. The asynchronicity of the process is incorporated into the mean field to produce convergence results which remain similar to those of an equivalent synchronous process. In addition, this allows many of the restrictive assumptions previously associated with asynchronous stochastic approximation to be removed. The framework is extended for a coupled asynchronous stochastic approximation process with set-valued mean fields. Two-timescales arguments are used here in a similar manner to the original work in this area by Borkar. The applicability of this approach is demonstrated through learning in a Markov decision process.
Adaptive Forgetting Factor Fictitious Play
Smyrnakis, Michalis, Leslie, David S.
It is now well known that decentralised optimisation can be formulated as a potential game, and game-theoretical learning algorithms can be used to find an optimum. One of the most common learning techniques in game theory is fictitious play. However fictitious play is founded on an implicit assumption that opponents' strategies are stationary. We present a novel variation of fictitious play that allows the use of a more realistic model of opponent strategy. It uses a heuristic approach, from the online streaming data literature, to adaptively update the weights assigned to recently observed actions. We compare the results of the proposed algorithm with those of stochastic and geometric fictitious play in a simple strategic form game, a vehicle target assignment game and a disaster management problem. In all the tests the rate of convergence of the proposed algorithm was similar or better than the variations of fictitious play we compared it with. The new algorithm therefore improves the performance of game-theoretical learning in decentralised optimisation.
Active Ranking using Pairwise Comparisons
Jamieson, Kevin G., Nowak, Robert D.
This paper examines the problem of ranking a collection of objects using pairwise comparisons (rankings of two objects). In general, the ranking of $n$ objects can be identified by standard sorting methods using $n log_2 n$ pairwise comparisons. We are interested in natural situations in which relationships among the objects may allow for ranking using far fewer pairwise comparisons. Specifically, we assume that the objects can be embedded into a $d$-dimensional Euclidean space and that the rankings reflect their relative distances from a common reference point in $R^d$. We show that under this assumption the number of possible rankings grows like $n^{2d}$ and demonstrate an algorithm that can identify a randomly selected ranking using just slightly more than $d log n$ adaptively selected pairwise comparisons, on average. If instead the comparisons are chosen at random, then almost all pairwise comparisons must be made in order to identify any ranking. In addition, we propose a robust, error-tolerant algorithm that only requires that the pairwise comparisons are probably correct. Experimental studies with synthetic and real datasets support the conclusions of our theoretical analysis.
Incremental Slow Feature Analysis: Adaptive and Episodic Learning from High-Dimensional Input Streams
Kompella, Varun Raj, Luciw, Matthew, Schmidhuber, Juergen
Slow Feature Analysis (SFA) extracts features representing the underlying causes of changes within a temporally coherent high-dimensional raw sensory input signal. Our novel incremental version of SFA (IncSFA) combines incremental Principal Components Analysis and Minor Components Analysis. Unlike standard batch-based SFA, IncSFA adapts along with non-stationary environments, is amenable to episodic training, is not corrupted by outliers, and is covariance-free. These properties make IncSFA a generally useful unsupervised preprocessor for autonomous learning agents and robots. In IncSFA, the CCIPCA and MCA updates take the form of Hebbian and anti-Hebbian updating, extending the biological plausibility of SFA. In both single node and deep network versions, IncSFA learns to encode its input streams (such as high-dimensional video) by informative slow features representing meaningful abstract environmental properties. It can handle cases where batch SFA fails.
Query-driven Procedures for Hybrid MKNF Knowledge Bases
Alferes, José Júlio, Knorr, Matthias, Swift, Terrance
Hybrid MKNF knowledge bases are one of the most prominent tightly integrated combinations of open-world ontology languages with closed-world (non-monotonic) rule paradigms. The definition of Hybrid MKNF is parametric on the description logic (DL) underlying the ontology language, in the sense that non-monotonic rules can extend any decidable DL language. Two related semantics have been defined for Hybrid MKNF: one that is based on the Stable Model Semantics for logic programs and one on the Well-Founded Semantics (WFS). Under WFS, the definition of Hybrid MKNF relies on a bottom-up computation that has polynomial data complexity whenever the DL language is tractable. Here we define a general query-driven procedure for Hybrid MKNF that is sound with respect to the stable model-based semantics, and sound and complete with respect to its WFS variant. This procedure is able to answer a slightly restricted form of conjunctive queries, and is based on tabled rule evaluation extended with an external oracle that captures reasoning within the ontology. Such an (abstract) oracle receives as input a query along with knowledge already derived, and replies with a (possibly empty) set of atoms, defined in the rules, whose truth would suffice to prove the initial query. With appropriate assumptions on the complexity of the abstract oracle, the general procedure maintains the data complexity of the WFS for Hybrid MKNF knowledge bases. To illustrate this approach, we provide a concrete oracle for EL+, a fragment of the light-weight DL EL++. Such an oracle has practical use, as EL++ is the language underlying OWL 2 EL, which is part of the W3C recommendations for the Semantic Web, and is tractable for reasoning tasks such as subsumption. We show that query-driven Hybrid MKNF preserves polynomial data complexity when using the EL+ oracle and WFS.
Real-time face swapping as a tool for understanding infant self-recognition
Nguyen, Sao Mai, Ogino, Masaki, Asada, Minoru
To study the preference of infants for contingency of movements and familiarity of faces during self-recognition task, we built, as an accurate and instantaneous imitator, a real-time face- swapper for videos. We present a non-constraint face-swapper based on 3D visual tracking that achieves real-time performance through parallel computing. Our imitator system is par- ticularly suited for experiments involving children with Autistic Spectrum Disorder who are often strongly disturbed by the constraints of other methods.
Multi-scale Mining of fMRI data with Hierarchical Structured Sparsity
Jenatton, Rodolphe, Gramfort, Alexandre, Michel, Vincent, Obozinski, Guillaume, Eger, Evelyn, Bach, Francis, Thirion, Bertrand
Inverse inference, or "brain reading", is a recent paradigm for analyzing functional magnetic resonance imaging (fMRI) data, based on pattern recognition and statistical learning. By predicting some cognitive variables related to brain activation maps, this approach aims at decoding brain activity. Inverse inference takes into account the multivariate information between voxels and is currently the only way to assess how precisely some cognitive information is encoded by the activity of neural populations within the whole brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, since there are far more features than samples, i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed, such as, among others, univariate feature selection, feature agglomeration and regularization techniques. In this paper, we consider a sparse hierarchical structured regularization. Specifically, the penalization we use is constructed from a tree that is obtained by spatially-constrained agglomerative clustering. This approach encodes the spatial structure of the data at different scales into the regularization, which makes the overall prediction procedure more robust to inter-subject variability. The regularization used induces the selection of spatially coherent predictive brain regions simultaneously at different scales. We test our algorithm on real data acquired to study the mental representation of objects, and we show that the proposed algorithm not only delineates meaningful brain regions but yields as well better prediction accuracy than reference methods.
Bootstrapping Intrinsically Motivated Learning with Human Demonstrations
Nguyen, Sao Mai, Baranes, Adrien, Oudeyer, Pierre-Yves
The word intrinsic motivation was first used in I. APPROACHESFOR ADAPTIVEPERSONALROBOTS psychology to describe the capability of humans to be attracted toward different activities for the pleasure that they experience The promise of personal robots operating in human environments intrinsically. These mechanisms have been shown crucial for to interact with people on a daily basis points out the humans to autonomously learn and discover new capabilities importance of adaptivity of the machine to its environment and [14]-[16]. This inspired the creation of fully autonomous users. The robot can no longer simply be all-programmed in robots [17]-[22] with meta-exploration mechanisms monitoring advance by engineers, and reproduce only actions predesigned the evolution of learning performances of the robot, in in factories. It needs to match its behaviour and learn new order to maximise informational gain, and with heuristics skills as the environment and users' needs change.
Entropy Search for Information-Efficient Global Optimization
Hennig, Philipp, Schuler, Christian J.
Contemporary global optimization algorithms are based on local measures of utility, rather than a probability measure over location and value of the optimum. They thus attempt to collect low function values, not to learn about the optimum. The reason for the absence of probabilistic global optimizers is that the corresponding inference problem is intractable in several ways. This paper develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm which addresses each of the computational intractabilities with a sequence of approximations and explicitly adresses the decision problem of maximizing information gain from each evaluation.