Country
Image Recognition in Context: Application to Microscopic Urinalysis
Song, Xubo B., Sill, Joseph, Abu-Mostafa, Yaser S., Kasdan, Harvey
We propose a new and efficient technique for incorporating contextual information into object classification. Most of the current techniques face the problem of exponential computation cost. In this paper, we propose a new general framework that incorporates partial context at a linear cost. This technique is applied to microscopic urinalysis image recognition, resulting in a significant improvement of recognition rate over the context free approach. This gain would have been impossible using conventional context incorporation techniques.
Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers
We present a variational Bayesian method for model selection over families of kernels classifiers like Support Vector machines or Gaussian processes. The algorithm needs no user interaction and is able to adapt a large number of kernel parameters to given data without having to sacrifice training cases for validation. This opens the possibility to use sophisticated families of kernels in situations where the small "standard kernel" classes are clearly inappropriate. We relate the method to other work done on Gaussian processes and clarify the relation between Support Vector machines and certain Gaussian process models.
LTD Facilitates Learning in a Noisy Environment
Munro, Paul W., Hernรกndez, Gerardina
This increase in synaptic strength must be countered by a mechanism for weakening the synapse [4]. The biological correlate, long-term depression (LTD) has also been observed in the laboratory; that is, synapses are observed to weaken when low presynaptic activity coincides with high postsynaptic activity [5]-[6].
Optimal Sizes of Dendritic and Axonal Arbors
I consider a topographic projection between two neuronal layers with different densities of neurons. Given the number of output neurons connected to each input neuron (divergence or fan-out) and the number of input neurons synapsing on each output neuron (convergence or fan-in) I determine the widths of axonal and dendritic arbors which minimize the total volume ofaxons and dendrites. My analytical results can be summarized qualitatively in the following rule: neurons of the sparser layer should have arbors wider than those of the denser layer. This agrees with the anatomical data from retinal and cerebellar neurons whose morphology and connectivity are known. The rule may be used to infer connectivity of neurons from their morphology.
Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology
Weiss, Yair, Freeman, William T.
Local "belief propagation" rules of the sort proposed by Pearl [15] are guaranteed to converge to the correct posterior probabilities in singly connected graphical models. Recently, a number of researchers have empirically demonstrated good performance of "loopy belief propagation" using these same rules on graphs with loops. Perhaps the most dramatic instance is the near Shannon-limit performance of "Turbo codes", whose decoding algorithm is equivalent to loopy belief propagation. Except for the case of graphs with a single loop, there has been little theoretical understanding of the performance of loopy propagation. Here we analyze belief propagation in networks with arbitrary topologies when the nodes in the graph describe jointly Gaussian random variables.
An Oscillatory Correlation Frame work for Computational Auditory Scene Analysis
Brown, Guy J., Wang, DeLiang L.
A neural model is described which uses oscillatory correlation to segregate speech from interfering sound sources. The core of the model is a two-layer neural oscillator network. A sound stream is represented by a synchronized population of oscillators, and different streams are represented by desynchronized oscillator populations. The model has been evaluated using a corpus of speech mixed with interfering sounds, and produces an improvement in signal-to-noise ratio for every mixture. 1 Introduction Speech is seldom heard in isolation: usually, it is mixed with other environmental sounds. Hence, the auditory system must parse the acoustic mixture reaching the ears in order to retrieve a description of each sound source, a process termed auditory scene analysis (ASA) [2]. Conceptually, ASA may be regarded as a two-stage process.
Inference for the Generalization Error
Nadeau, Claude, Bengio, Yoshua
In order to to compare learning algorithms, experimental results reported in the machine learning litterature often use statistical tests of significance. Unfortunately, most of these tests do not take into account the variability due to the choice of training set. We perform a theoretical investigation of the variance of the cross-validation estimate of the generalization error that takes into account the variability due to the choice of training sets. This allows us to propose two new ways to estimate this variance. We show, via simulations, that these new statistics perform well relative to the statistics considered by Dietterich (Dietterich, 1998). 1 Introduction When applying a learning algorithm (or comparing several algorithms), one is typically interested in estimating its generalization error. Its point estimation is rather trivial through cross-validation.
Robust Full Bayesian Methods for Neural Networks
Andrieu, Christophe, Freitas, Joรฃo F. G. de, Doucet, Arnaud
In particular, Mackay showed that by approximating the distributions of the weights with Gaussians and adopting smoothing priors, it is possible to obtain estimates of the weights and output variances and to automatically set the regularisation coefficients. Neal (1996) cast the net much further by introducing advanced Bayesian simulation methods, specifically the hybrid Monte Carlo method, into the analysis of neural networks [3]. Bayesian sequential Monte Carlo methods have also been shown to provide good training results, especially in time-varying scenarios [4]. More recently, Rios Insua and Muller (1998) and Holmes and Mallick (1998) have addressed the issue of selecting the number of hidden neurons with growing and pruning algorithms from a Bayesian perspective [5,6]. In particular, they apply the reversible jump Markov Chain Monte Carlo (MCMC) algorithm of Green [7] to feed-forward sigmoidal networks and radial basis function (RBF) networks to obtain joint estimates of the number of neurons and weights. We also apply the reversible jump MCMC simulation algorithm to RBF networks so as to compute the joint posterior distribution of the radial basis parameters and the number of basis functions. However, we advance this area of research in two important directions. Firstly, we propose a full hierarchical prior for RBF networks.
Lower Bounds on the Complexity of Approximating Continuous Functions by Sigmoidal Neural Networks
This is one of the theoretical results most frequently cited to justify the use of sigmoidal neural networks in applications. By this statement one refers to the fact that sigmoidal neural networks have been shown to be able to approximate any continuous function arbitrarily well. Numerous results in the literature have established variants of this universal approximation property by considering distinct function classes to be approximated by network architectures using different types of neural activation functions with respect to various approximation criteria, see for instance [1, 2, 3, 5, 6, 11, 12, 14, 15].
Neural System Model of Human Sound Localization
This paper examines the role of biological constraints in the human auditory localization process. A psychophysical and neural system modeling approach was undertaken in which performance comparisons between competing models and a human subject explore the relevant biologically plausible "realism constraints". The directional acoustical cues, upon which sound localization is based, were derived from the human subject's head-related transfer functions (HRTFs). Sound stimuli were generated by convolving bandpass noise with the HRTFs and were presented to both the subject and the model. The input stimuli to the model was processed using the Auditory Image Model of cochlear processing. The cochlear data was then analyzed by a time-delay neural network which integrated temporal and spectral information to determine the spatial location of the sound source.