Country
Classification by Pairwise Coupling
Hastie, Trevor, Tibshirani, Robert
We discuss a strategy for polychotomous classification that involves estimating class probabilities for each pair of classes, and then coupling the estimates together. The coupling model is similar to the Bradley-Terry method for paired comparisons. We study the nature of the class probability estimates that arise, and examine the performance of the procedure in simulated datasets. The classifiers used include linear discriminants and nearest neighbors: application to support vector machines is also briefly described.
Approximating Posterior Distributions in Belief Networks Using Mixtures
Bishop, Christopher M., Lawrence, Neil D., Jaakkola, Tommi, Jordan, Michael I.
Exact inference in densely connected Bayesian networks is computationally intractable, and so there is considerable interest in developing effective approximation schemes. One approach which has been adopted is to bound the log likelihood using a mean-field approximating distribution. While this leads to a tractable algorithm, the mean field distribution is assumed to be factorial and hence unimodal. In this paper we demonstrate the feasibility of using a richer class of approximating distributions based on mixtures of mean field distributions. We derive an efficient algorithm for updating the mixture parameters and apply it to the problem of learning in sigmoid belief networks. Our results demonstrate a systematic improvement over simple mean field theory as the number of mixture components is increased.
Mapping a Manifold of Perceptual Observations
Nonlinear dimensionality reduction is formulated here as the problem of trying to find a Euclidean feature-space embedding of a set of observations that preserves as closely as possible their intrinsic metric structure - the distances between points on the observation manifold as measured along geodesic paths. Our isometric feature mapping procedure, or isomap, is able to reliably recover low-dimensional nonlinear structure in realistic perceptual data sets, such as a manifold of face images, where conventional global mapping methods find only local minima. The recovered map provides a canonical set of globally meaningful features, which allows perceptual transformations such as interpolation, extrapolation, and analogy - highly nonlinear transformations in the original observation space - to be computed with simple linear operations in feature space.
Hierarchical Non-linear Factor Analysis and Topographic Maps
Ghahramani, Zoubin, Hinton, Geoffrey E.
We first describe a hierarchical, generative model that can be viewed as a nonlinear generalisation of factor analysis and can be implemented in a neural network. The model performs perceptual inference in a probabilistically consistent manner by using top-down, bottom-up and lateral connections. These connections can be learned using simple rules that require only locally available information. We then show how to incorporate lateral connections into the generative model. The model extracts a sparse, distributed, hierarchical representation of depth from simplified random-dot stereograms and the localised disparity detectors in the first hidden layer form a topographic map. When presented with image patches from natural scenes, the model develops topographically organised local feature detectors.
On Parallel versus Serial Processing: A Computational Study of Visual Search
This paper presents a neural-model of pre-attentive visual processing. The model explains why certain displays can be processed very fast, "in parallel", while others require slower, "serial" processing, in subsequent attentional systems. Our approach stems from the observation that the visual environment is overflowing with diverse information, but the biological information-processing systems analyzing it have a limited capacity [1]. This apparent mismatch suggests that data compression should be performed at an early stage of perception, and that via an accompanying process of dimension reduction, only a few essential features of the visual display should be retained. We propose that only parallel displays incorporate global features that enable fast target detection, and hence they can be processed pre-attentively, with all items (target and dis tractors) examined at once.
MELONET I: Neural Nets for Inventing Baroque-Style Chorale Variations
The investigation of neural information structures in music is a rather new, exciting research area bringing together different disciplines such as computer science, mathematics, musicology and cognitive science. One of its aims is to find out what determines the personal style of a composer. It has been shown that neural network models - better than other AI approaches - are able to learn and reproduce styledependent features from given examples, e.g., chorale harmonizations in the style of Johann Sebastian Bach (Hild et al., 1992). However when dealing with melodic sequences, e.g., folksong style melodies, all of these models have considerable difficulties to learn even simple structures. The reason is that they are unable to capture high-order structure such as harmonies, motifs and phrases simultaneously occurring at multiple time scales.