Mapping a Manifold of Perceptual Observations
–Neural Information Processing Systems
Nonlinear dimensionality reduction is formulated here as the problem of trying to find a Euclidean feature-space embedding of a set of observations that preserves as closely as possible their intrinsic metric structure - the distances between points on the observation manifold as measured along geodesic paths. Our isometric feature mapping procedure, or isomap, is able to reliably recover low-dimensional nonlinear structure in realistic perceptual data sets, such as a manifold of face images, where conventional global mapping methods find only local minima. The recovered map provides a canonical set of globally meaningful features, which allows perceptual transformations such as interpolation, extrapolation, and analogy - highly nonlinear transformations in the original observation space - to be computed with simple linear operations in feature space.
Neural Information Processing Systems
Dec-31-1998
- Country:
- North America > United States > Massachusetts > Middlesex County > Cambridge (0.14)
- Technology: