Not enough data to create a plot.
Try a different view from the menu above.
Country
Large-Scale Paralleled Sparse Principal Component Analysis
Liu, W., Zhang, H., Tao, D., Wang, Y., Lu, K.
Principal component analysis (PCA) is a statistical technique commonly used in multivariate data analysis. However, PCA can be difficult to interpret and explain since the principal components (PCs) are linear combinations of the original variables. Sparse PCA (SPCA) aims to balance statistical fidelity and interpretability by approximating sparse PCs whose projections capture the maximal variance of original data. In this paper we present an efficient and paralleled method of SPCA using graphics processing units (GPUs), which can process large blocks of data in parallel. Specifically, we construct parallel implementations of the four optimization formulations of the generalized power method of SPCA (GP-SPCA), one of the most efficient and effective SPCA approaches, on a GPU. The parallel GPU implementation of GP-SPCA (using CUBLAS) is up to eleven times faster than the corresponding CPU implementation (using CBLAS), and up to 107 times faster than a MatLab implementation. Extensive comparative experiments in several real-world datasets confirm that SPCA offers a practical advantage.
Non-parametric Bayesian modeling of complex networks
Schmidt, Mikkel N., Mørup, Morten
Modeling structure in complex networks using Bayesian non-parametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This paper provides a gentle introduction to non-parametric Bayesian modeling of complex networks: Using an infinite mixture model as running example we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model's fit and predictive performance. We explain how advanced non-parametric models for complex networks can be derived and point out relevant literature.
High-Dimensional Regression with Gaussian Mixtures and Partially-Latent Response Variables
Deleforge, Antoine, Forbes, Florence, Horaud, Radu
In this work we address the problem of approximating high-dimensional data with a low-dimensional representation. We make the following contributions. We propose an inverse regression method which exchanges the roles of input and response, such that the low-dimensional variable becomes the regressor, and which is tractable. We introduce a mixture of locally-linear probabilistic mapping model that starts with estimating the parameters of inverse regression, and follows with inferring closed-form solutions for the forward parameters of the high-dimensional regression problem of interest. Moreover, we introduce a partially-latent paradigm, such that the vector-valued response variable is composed of both observed and latent entries, thus being able to deal with data contaminated by experimental artifacts that cannot be explained with noise models. The proposed probabilistic formulation could be viewed as a latent-variable augmentation of regression. We devise expectation-maximization (EM) procedures based on a data augmentation strategy which facilitates the maximum-likelihood search over the model parameters. We propose two augmentation schemes and we describe in detail the associated EM inference procedures that may well be viewed as generalizations of a number of EM regression, dimension reduction, and factor analysis algorithms. The proposed framework is validated with both synthetic and real data. We provide experimental evidence that our method outperforms several existing regression techniques.
The Sparse Principal Component of a Constant-rank Matrix
Asteris, Megasthenis, Papailiopoulos, Dimitris S., Karystinos, George N.
The computation of the sparse principal component of a matrix is equivalent to the identification of its principal submatrix with the largest maximum eigenvalue. Finding this optimal submatrix is what renders the problem ${\mathcal{NP}}$-hard. In this work, we prove that, if the matrix is positive semidefinite and its rank is constant, then its sparse principal component is polynomially computable. Our proof utilizes the auxiliary unit vector technique that has been recently developed to identify problems that are polynomially solvable. Moreover, we use this technique to design an algorithm which, for any sparsity value, computes the sparse principal component with complexity ${\mathcal O}\left(N^{D+1}\right)$, where $N$ and $D$ are the matrix size and rank, respectively. Our algorithm is fully parallelizable and memory efficient.
Introduction to Intelligent Systems in Traffic and Transportation
Bazzan, Ana L.C., Klgl, Franziska
Urban mobility is not only one of the pillars of modern economic systems, but also a key issue in the quest for equality of opportunity, once it can improve access to other services. This book is a broad introduction into the basic but relevant concepts related to transportation systems including some of the most exciting technologies originating in computer science and engineering. ISBN 9781627052078, 137 pages.
Abstraction in decision-makers with limited information processing capabilities
Genewein, Tim, Braun, Daniel A.
A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.
The Value Iteration Algorithm is Not Strongly Polynomial for Discounted Dynamic Programming
Feinberg, Eugene A., Huang, Jefferson
This note provides a simple example demonstrating that, if exact computations are allowed, the number of iterations required for the value iteration algorithm to find an optimal policy for discounted dynamic programming problems may grow arbitrarily quickly with the size of the problem. In particular, the number of iterations can be exponential in the number of actions. Thus, unlike policy iterations, the value iteration algorithm is not strongly polynomial for discounted dynamic programming.
Time-varying Learning and Content Analytics via Sparse Factor Analysis
Lan, Andrew S., Studer, Christoph, Baraniuk, Richard G.
We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learner's concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education.
Permuted NMF: A Simple Algorithm Intended to Minimize the Volume of the Score Matrix
Non-Negative Matrix Factorization, NMF, attempts to find a number of archetypal response profiles, or parts, such that any sample profile in the dataset can be approximated by a close profile among these archetypes or a linear combination of these profiles. The non-negativity constraint is imposed while estimating archetypal profiles, due to the non-negative nature of the observed signal. Apart from non negativity, a volume constraint can be applied on the Score matrix W to enhance the ability of learning parts of NMF. In this report, we describe a very simple algorithm, which in effect achieves volume minimization, although indirectly.
Functional Bipartite Ranking: a Wavelet-Based Filtering Approach
Clémençon, Stéphan, Depecker, Marine
It is the main goal of this article to address the bipartite ranking issue from the perspective of functional data analysis (FDA). Given a training set of independent realizations of a (possibly sampled) second-order random function with a (locally) smooth autocorrelation structure and to which a binary label is randomly assigned, the objective is to learn a scoring function s with optimal ROC curve. Based on linear/nonlinear wavelet-based approximations, it is shown how to select compact finite dimensional representations of the input curves adaptively, in order to build accurate ranking rules, using recent advances in the ranking problem for multivariate data with binary feedback. Beyond theoretical considerations, the performance of the learning methods for functional bipartite ranking proposed in this paper are illustrated by numerical experiments.