Plotting

 Country


Stream Computing

arXiv.org Artificial Intelligence

Stream computing is the use of multiple autonomic and parallel modules together with integrative processors at a higher level of abstraction to embody "intelligent" processing. The biological basis of this computing is sketched and the matter of learning is examined.


Parameterizations and fitting of bi-directed graph models to categorical data

arXiv.org Machine Learning

We discuss two parameterizations of models for marginal independencies for discrete distributions which are representable by bi-directed graph models, under the global Markov property. Such models are useful data analytic tools especially if used in combination with other graphical models. The first parameterization, in the saturated case, is also known as the multivariate logistic transformation, the second is a variant that allows, in some (but not all) cases, variation independent parameters. An algorithm for maximum likelihood fitting is proposed, based on an extension of the Aitchison and Silvey method.


Le terme et le concept : fondements d'une ontoterminologie

arXiv.org Artificial Intelligence

Most definitions of ontology, viewed as a "specification of a conceptualization", agree on the fact that if an ontology can take different forms, it necessarily includes a vocabulary of terms and some specification of their meaning in relation to the domain's conceptualization. And as domain knowledge is mainly conveyed through scientific and technical texts, we can hope to extract some useful information from them for building ontology. But is it as simple as this? In this article we shall see that the lexical structure, i.e. the network of words linked by linguistic relationships, does not necessarily match the domain conceptualization. We have to bear in mind that writing documents is the concern of textual linguistics, of which one of the principles is the incompleteness of text, whereas building ontology - viewed as task-independent knowledge - is concerned with conceptualization based on formal and not natural languages. Nevertheless, the famous Sapir and Whorf hypothesis, concerning the interdependence of thought and language, is also applicable to formal languages. This means that the way an ontology is built and a concept is defined depends directly on the formal language which is used; and the results will not be the same. The introduction of the notion of ontoterminology allows to take into account epistemological principles for formal ontology building.


Imprecise probability trees: Bridging two theories of imprecise probability

arXiv.org Machine Learning

We give an overview of two approaches to probability theory where lower and upper probabilities, rather than probabilities, are used: Walley's behavioural theory of imprecise probabilities, and Shafer and Vovk's game-theoretic account of probability. We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence between them that (i) has an interesting interpretation, and (ii) allows us to freely import results from one theory into the other. Our approach leads to an account of probability trees and random processes in the framework of Walley's theory. We indicate how our results can be used to reduce the computational complexity of dealing with imprecision in probability trees, and we prove an interesting and quite general version of the weak law of large numbers.


Batch kernel SOM and related Laplacian methods for social network analysis

arXiv.org Machine Learning

Large graphs are natural mathematical models for describing the structure of the data in a wide variety of fields, such as web mining, social networks, information retrieval, biological networks, etc. For all these applications, automatic tools are required to get a synthetic view of the graph and to reach a good understanding of the underlying problem. In particular, discovering groups of tightly connected vertices and understanding the relations between those groups is very important in practice. This paper shows how a kernel version of the batch Self Organizing Map can be used to achieve these goals via kernels derived from the Laplacian matrix of the graph, especially when it is used in conjunction with more classical methods based on the spectral analysis of the graph. The proposed method is used to explore the structure of a medieval social network modeled through a weighted graph that has been directly built from a large corpus of agrarian contracts.


Toward a statistical mechanics of four letter words

arXiv.org Artificial Intelligence

Princeton Center for Theoretical Physics, Princeton University, Princeton, New Jersey 08544 USA (Dated: December 13, 2021) We consider words as a network of interacting letters, and approximate the probability distribution of states taken on by this network. Despite the intuition that the rules of English spelling are highly combinatorial (and arbitrary), we find that maximum entropy models consistent with pairwise correlations among letters provide a surprisingly good approximation to the full statistics of four letter words, capturing 92% of the multi-information among letters and even'discovering' real words that were not represented in the data from which the pairwise correlations were estimated. The maximum entropy model defines an energy landscape on the space of possible words, and local minima in this landscape account for nearly two-thirds of words used in written English. Many complex systems convey an impression of order into these controversies about language in the broad that is not so easily captured by the traditional tools of sense, but rather to test the power of pairwise interactions theoretical physics. Thus, it is not clear what sort of to capture seemingly complex structure.


Analysis of Contour Motions

Neural Information Processing Systems

A reliable motion estimation algorithm must function under a wide range of conditions. Oneregime, which we consider here, is the case of moving objects with contours but no visible texture. Tracking distinctive features such as corners can disambiguate the motion of contours, but spurious features such as T-junctions can be badly misleading. It is difficult to determine the reliability of motion from local measurements, since a full rank covariance matrix can result from both real and spurious features. We propose a novel approach that avoids these points altogether, andderives global motion estimates by utilizing information from three levels of contour analysis: edgelets, boundary fragments and contours.


Attribute-efficient learning of decision lists and linear threshold functions under unconcentrated distributions

Neural Information Processing Systems

We consider the well-studied problem of learning decision lists using few examples whenmany irrelevant features are present. We show that smooth boosting algorithms suchas MadaBoost can efficiently learn decision lists of length k over n boolean variables using poly(k, log n) many examples provided that the marginal distribution over the relevant variables is "not too concentrated" in an L



Differential Entropic Clustering of Multivariate Gaussians

Neural Information Processing Systems

Gaussian data is pervasive and many learning algorithms (e.g., k-means) model their inputs as a single sample drawn from a multivariate Gaussian. However, in many real-life settings, each input object is best described by multiple samples drawn from a multivariate Gaussian. Such data can arise, for example, in a movie review database where each movie is rated by several users, or in time-series domains such as sensor networks. Here, each input can be naturally described by both a mean vector and covariance matrix which parameterize the Gaussian distribution. In this paper, we consider the problem of clustering such input objects, each represented as a multivariate Gaussian. We formulate the problem using an information theoretic approach and draw several interesting theoretical connections to Bregman divergences and also Bregman matrix divergences. We evaluate our method across several domains, including synthetic data, sensor network data, and a statistical debugging application.