Not enough data to create a plot.
Try a different view from the menu above.
Country
Decomposition of the NVALUE constraint
Bessiere, Christian, Katsirelos, George, Narodytska, Nina, Quimper, Claude-Guy, Walsh, Toby
We study decompositions of NVALUE, a global constraint that can be used to model a wide range of problems where values need to be counted. Whilst decomposition typically hinders propagation, we identify one decomposition that maintains a global view as enforcing bound consistency on the decomposition achieves bound consistency on the original global NVALUE constraint. Such decompositions offer the prospect for advanced solving techniques like nogood learning and impact based branching heuristics. They may also help SAT and IP solvers take advantage of the propagation of global constraints.
On Chase Termination Beyond Stratification
Meier, Michael, Schmidt, Michael, Lausen, Georg
We study the termination problem of the chase algorithm, a central tool in various database problems such as the constraint implication problem, Conjunctive Query optimization, rewriting queries using views, data exchange, and data integration. The basic idea of the chase is, given a database instance and a set of constraints as input, to fix constraint violations in the database instance. It is well-known that, for an arbitrary set of constraints, the chase does not necessarily terminate (in general, it is even undecidable if it does or not). Addressing this issue, we review the limitations of existing sufficient termination conditions for the chase and develop new techniques that allow us to establish weaker sufficient conditions. In particular, we introduce two novel termination conditions called safety and inductive restriction, and use them to define the so-called T-hierarchy of termination conditions. We then study the interrelations of our termination conditions with previous conditions and the complexity of checking our conditions. This analysis leads to an algorithm that checks membership in a level of the T-hierarchy and accounts for the complexity of termination conditions. As another contribution, we study the problem of data-dependent chase termination and present sufficient termination conditions w.r.t. fixed instances. They might guarantee termination although the chase does not terminate in the general case. As an application of our techniques beyond those already mentioned, we transfer our results into the field of query answering over knowledge bases where the chase on the underlying database may not terminate, making existing algorithms applicable to broader classes of constraints.
Clustering Based on Pairwise Distances When the Data is of Mixed Dimensions
In the context of clustering, we consider a generative model in a Euclidean ambient space with clusters of different shapes, dimensions, sizes and densities. In an asymptotic setting where the number of points becomes large, we obtain theoretical guaranties for a few emblematic methods based on pairwise distances: a simple algorithm based on the extraction of connected components in a neighborhood graph; the spectral clustering method of Ng, Jordan and Weiss; and hierarchical clustering with single linkage. The methods are shown to enjoy some near-optimal properties in terms of separation between clusters and robustness to outliers. The local scaling method of Zelnik-Manor and Perona is shown to lead to a near-optimal choice for the scale in the first two methods. We also provide a lower bound on the spectral gap to consistently choose the correct number of clusters in the spectral method.
A Nonconformity Approach to Model Selection for SVMs
Hardoon, David R., Hussain, Zakria, Shawe-Taylor, John
We investigate the issue of model selection and the use of the nonconformity (strangeness) measure in batch learning. Using the nonconformity measure we propose a new training algorithm that helps avoid the need for Cross-Validation or Leave-One-Out model selection strategies. We provide a new generalisation error bound using the notion of nonconformity to upper bound the loss of each test example and show that our proposed approach is comparable to standard model selection methods, but with theoretical guarantees of success and faster convergence. We demonstrate our novel model selection technique using the Support Vector Machine.
Paired Comparisons-based Interactive Differential Evolution
Takagi, Hideyuki, Pallez, Denis
We propose Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are two big keys for reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals each other but compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed one is superior to others from both user interface and convergence performance points of view.
Resource Matchmaking Algorithm using Dynamic Rough Set in Grid Environment
Ataollahi, Iraj, Analoui, Mortza
Grid environment is a service oriented infrastructure in which many heterogeneous resources participate to provide the high performance computation. One of the bug issues in the grid environment is the vagueness and uncertainty between advertised resources and requested resources. Furthermore, in an environment such as grid dynamicity is considered as a crucial issue which must be dealt with. Classical rough set have been used to deal with the uncertainty and vagueness. But it can just be used on the static systems and can not support dynamicity in a system. In this work we propose a solution, called Dynamic Rough Set Resource Discovery (DRSRD), for dealing with cases of vagueness and uncertainty problems based on Dynamic rough set theory which considers dynamic features in this environment. In this way, requested resource properties have a weight as priority according to which resource matchmaking and ranking process is done. We also report the result of the solution obtained from the simulation in GridSim simulator. The comparison has been made between DRSRD, classical rough set theory based algorithm, and UDDI and OWL S combined algorithm. DRSRD shows much better precision for the cases with vagueness and uncertainty in a dynamic system such as the grid rather than the classical rough set theory based algorithm, and UDDI and OWL S combined algorithm.
Lower Bounds for BMRM and Faster Rates for Training SVMs
Saha, Ankan, Zhang, Xinhua, Vishwanathan, S. V. N.
Regularized risk minimization with the binary hinge loss and its variants lies at the heart of many machine learning problems. Bundle methods for regularized risk minimization (BMRM) and the closely related SVMStruct are considered the best general purpose solvers to tackle this problem. It was recently shown that BMRM requires $O(1/\epsilon)$ iterations to converge to an $\epsilon$ accurate solution. In the first part of the paper we use the Hadamard matrix to construct a regularized risk minimization problem and show that these rates cannot be improved. We then show how one can exploit the structure of the objective function to devise an algorithm for the binary hinge loss which converges to an $\epsilon$ accurate solution in $O(1/\sqrt{\epsilon})$ iterations.
A Bayesian Framework for Collaborative Multi-Source Signal Detection
Couillet, Romain, Debbah, Merouane
This paper introduces a Bayesian framework to detect multiple signals embedded in noisy observations from a sensor array. For various states of knowledge on the communication channel and the noise at the receiving sensors, a marginalization procedure based on recent tools of finite random matrix theory, in conjunction with the maximum entropy principle, is used to compute the hypothesis selection criterion. Quite remarkably, explicit expressions for the Bayesian detector are derived which enable to decide on the presence of signal sources in a noisy wireless environment. The proposed Bayesian detector is shown to outperform the classical power detector when the noise power is known and provides very good performance for limited knowledge on the noise power. Simulations corroborate the theoretical results and quantify the gain achieved using the proposed Bayesian framework.
On Ranking Senators By Their Votes
The problem of ranking a set of objects given some measure of similarity is one of the most basic in machine learning. Recently Agarwal proposed a method based on techniques in semi-supervised learning utilizing the graph Laplacian. In this work we consider a novel application of this technique to ranking binary choice data and apply it specifically to ranking US Senators by their ideology.