Not enough data to create a plot.
Try a different view from the menu above.
Country
A Theory of Retinal Population Coding
Doi, Eizaburo, Lewicki, Michael S.
Efficient coding models predict that the optimal code for natural images is a population of oriented Gabor receptive fields. These results match response properties of neurons in primary visual cortex, but not those in the retina. Does the retina use an optimal code, and if so, what is it optimized for? Previous theories of retinal coding have assumed that the goal is to encode the maximal amount of information about the sensory signal. However, the image sampled by retinal photoreceptors is degraded both by the optics of the eye and by the photoreceptor noise. Therefore, de-blurring and de-noising of the retinal signal should be important aspects of retinal coding.
A Complexity-Distortion Approach to Joint Pattern Alignment
Vedaldi, Andrea, Soatto, Stefano
Image Congealing (IC) is a nonparametric method for the joint alignment of a collection of images affected by systematic and unwanted deformations. The method attempts to undo the deformations by minimizing a measure of complexity of the image ensemble, such as the averaged per-pixel entropy. This enables alignment without an explicit model of the aligned dataset as required by other methods (e.g.
Fundamental Limitations of Spectral Clustering
Spectral clustering methods are common graph-based approaches to clustering of data. Spectral clustering algorithms typically start from local information encoded in a weighted graph on the data and cluster according to the global eigenvectors of the corresponding (normalized) similarity matrix. One contribution of this paper is to present fundamental limitations of this general local to global approach. We show that based only on local information, the normalized cut functional is not a suitable measure for the quality of clustering. Further, even with a suitable similarity measure, we show that the first few eigenvectors of such adjacency matrices cannot successfully cluster datasets that contain structures at different scales of size and density. Based on these findings, a second contribution of this paper is a novel diffusion based measure to evaluate the coherence of individual clusters. Our measure can be used in conjunction with any bottom-up graph-based clustering method, it is scale-free and can determine coherent clusters at all scales. We present both synthetic examples and real image segmentation problems where various spectral clustering algorithms fail. In contrast, using this coherence measure finds the expected clusters at all scales.
Unified Inference for Variational Bayesian Linear Gaussian State-Space Models
Barber, David, Chiappa, Silvia
Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in applications ranging from acoustics to bioinformatics. The most challenging aspect of implementing the method is in performing inference on the hidden state sequence of the model. We show how to convert the inference problem so that standard Kalman Filtering/Smoothing recursions from the literature may be applied. This is in contrast to previously published approaches based on Belief Propagation. Our framework both simplifies and unifies the inference problem, so that future applications may be more easily developed. We demonstrate the elegance of the approach on Bayesian temporal ICA, with an application to finding independent dynamical processes underlying noisy EEG signals.
A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation
Teh, Yee W., Newman, David, Welling, Max
Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained much popularity in applications ranging from document modeling to computer vision. Due to the large scale nature of these applications, current inference procedures like variational Bayes and Gibbs sampling have been found lacking. In this paper we propose the collapsed variational Bayesian inference algorithm for LDA, and show that it is computationally efficient, easy to implement and significantly more accurate than standard variational Bayesian inference for LDA.
Convex Repeated Games and Fenchel Duality
Shalev-shwartz, Shai, Singer, Yoram
We describe an algorithmic framework for an abstract game which we term a convex repeated game. We show that various online learning and boosting algorithms can be all derived as special cases of our algorithmic framework. This unified view explains the properties of existing algorithms and also enables us to derive several new interesting algorithms. Our algorithmic framework stems from a connection that we build between the notions of regret in game theory and weak duality in convex optimization.
Using Combinatorial Optimization within Max-Product Belief Propagation
Tarlow, Daniel, Elidan, Gal, Koller, Daphne, Duchi, John C.
In general, the problem of computing a maximum a posteriori (MAP) assignment in a Markov random field (MRF) is computationally intractable. However, in certain subclasses of MRF, an optimal or close-to-optimal assignment can be found very efficiently using combinatorial optimization algorithms: certain MRFs with mutual exclusion constraints can be solved using bipartite matching, and MRFs with regular potentials can be solved using minimum cut methods. However, these solutions do not apply to the many MRFs that contain such tractable components as sub-networks, but also other non-complying potentials.
Linearly-solvable Markov decision problems
We introduce a class of MPDs which greatly simplify Reinforcement Learning. They have discrete state spaces and continuous control spaces. The controls have the effect of rescaling the transition probabilities of an underlying Markov chain. A control cost penalizing KL divergence between controlled and uncontrolled transition probabilities makes the minimization problem convex, and allows analytical computation of the optimal controls given the optimal value function. An exponential transformation of the optimal value function makes the minimized Bellman equation linear.
Generalized Regularized Least-Squares Learning with Predefined Features in a Hilbert Space
Li, Wenye, Lee, Kin-hong, Leung, Kwong-sak
Kernel-based regularized learning seeks a model in a hypothesis space by minimizing the empirical error and the model's complexity. Based on the representer theorem, the solution consists of a linear combination of translates of a kernel. This paper investigates a generalized form of representer theorem for kernel-based learning. After mapping predefined features and translates of a kernel simultaneously onto a hypothesis space by a specific way of constructing kernels, we proposed a new algorithm by utilizing a generalized regularizer which leaves part of the space unregularized. Using a squared-loss function in calculating the empirical error, a simple convex solution is obtained which combines predefined features with translates of the kernel. Empirical evaluations have confirmed the effectiveness of the algorithm for supervised learning tasks.
Accelerated Variational Dirichlet Process Mixtures
Kurihara, Kenichi, Welling, Max, Vlassis, Nikos
Dirichlet Process (DP) mixture models are promising candidates for clustering applications where the number of clusters is unknown a priori. Due to computational considerations these models are unfortunately unsuitable for large scale data-mining applications. We propose a class of deterministic accelerated DP mixture models that can routinely handle millions of data-cases. The speedup is achieved by incorporating kd-trees into a variational Bayesian algorithm for DP mixtures in the stick-breaking representation, similar to that of Blei and Jordan (2005). Our algorithm differs in the use of kd-trees and in the way we handle truncation: we only assume that the variational distributions are fixed at their priors after a certain level. Experiments show that speedups relative to the standard variational algorithm can be significant.