Not enough data to create a plot.
Try a different view from the menu above.
Country
Bayesian models of human action understanding
Baker, Chris, Saxe, Rebecca, Tenenbaum, Joshua B.
We present a Bayesian framework for explaining how people reason about and predict the actions of an intentional agent, based on observing its behavior. Action-understanding is cast as a problem of inverting a probabilistic generative model, which assumes that agents tend to act rationally in order to achieve their goals given the constraints of their environment. Working in a simple sprite-world domain, we show how this model can be used to infer the goal of an agent and predict how the agent will act in novel situations or when environmental constraints change. The model provides a qualitative account of several kinds of inferences that preverbal infants have been shown to perform, and also fits quantitative predictions that adult observers make in a new experiment.
Scaling Laws in Natural Scenes and the Inference of 3D Shape
Lee, Tai-sing, Potetz, Brian R.
This paper explores the statistical relationship between natural images and their underlying range (depth) images. We look at how this relationship changes over scale, and how this information can be used to enhance low resolution range data using a full resolution intensity image. Based on our findings, we propose an extension to an existing technique known as shape recipes [3], and the success of the two methods are compared using images and laser scans of real scenes. Our extension is shown to provide a twofold improvement over the current method. Furthermore, we demonstrate that ideal linear shape-from-shading filters, when learned from natural scenes, may derive even more strength from shadow cues than from the traditional linear-Lambertian shading cues.
Cyclic Equilibria in Markov Games
Zinkevich, Martin, Greenwald, Amy, Littman, Michael L.
Although variants of value iteration have been proposed for finding Nash or correlated equilibria in general-sum Markov games, these variants have not been shown to be effective in general. In this paper, we demonstrate by construction that existing variants of value iteration cannot find stationary equilibrium policies in arbitrary general-sum Markov games. Instead, we propose an alternative interpretation of the output of value iteration based on a new (non-stationary) equilibrium concept that we call "cyclic equilibria." We prove that value iteration identifies cyclic equilibria in a class of games in which it fails to find stationary equilibria. We also demonstrate empirically that value iteration finds cyclic equilibria in nearly all examples drawn from a random distribution of Markov games.
Bayesian Sets
Ghahramani, Zoubin, Heller, Katherine A.
Sets", we consider the problem of retrieving items from a concept or cluster, given a query consisting of a few items from that cluster. We formulate this as a Bayesian inference problem and describe a very simple algorithm for solving it. Our algorithm uses a modelbased concept of a cluster and ranks items using a score which evaluates the marginal probability that each item belongs to a cluster containing the query items. For exponential family models with conjugate priors this marginal probability is a simple function of sufficient statistics. We focus on sparse binary data and show that our score can be evaluated exactly using a single sparse matrix multiplication, making it possible to apply our algorithm to very large datasets. We evaluate our algorithm on three datasets: retrieving movies from EachMovie, finding completions of author sets from the NIPS dataset, and finding completions of sets of words appearing in the Grolier encyclopedia.
Consensus Propagation
Roy, Benjamin V., Moallemi, Ciamac C.
We propose consensus propagation, an asynchronous distributed protocol for averaging numbers across a network. We establish convergence, characterize the convergence rate for regular graphs, and demonstrate that the protocol exhibits better scaling properties than pairwise averaging, an alternative that has received much recent attention. Consensus propagation can be viewed as a special case of belief propagation, and our results contribute to the belief propagation literature. In particular, beyond singly-connected graphs, there are very few classes of relevant problems for which belief propagation is known to converge.
Pattern Recognition from One Example by Chopping
Fleuret, Francois, Blanchard, Gilles
We investigate the learning of the appearance of an object from a single image of it. Instead of using a large number of pictures of the object to recognize, we use a labeled reference database of pictures of other objects to learn invariance to noise and variations in pose and illumination. This acquired knowledge is then used to predict if two pictures of new objects, which do not appear on the training pictures, actually display the same object. We propose a generic scheme called chopping to address this task. It relies on hundreds of random binary splits of the training set chosen to keep together the images of any given object. Those splits are extended to the complete image space with a simple learning algorithm. Given two images, the responses of the split predictors are combined with a Bayesian rule into a posterior probability of similarity.
Learning Minimum Volume Sets
Given a probability measure P and a reference measure µ, one is often interested in the minimum µ-measure set with P-measure at least α. Minimum volume sets of this type summarize the regions of greatest probability mass of P, and are useful for detecting anomalies and constructing confidence regions. This paper addresses the problem of estimating minimum volume sets based on independent samples distributed according to P. Other than these samples, no other information is available regarding P, but the reference measure µ is assumed to be known. We introduce rules for estimating minimum volume sets that parallel the empirical risk minimization and structural risk minimization principles in classification. As in classification, we show that the performances of our estimators are controlled by the rate of uniform convergence of empirical to true probabilities over the class from which the estimator is drawn. Thus we obtain finite sample size performance bounds in terms of VC dimension and related quantities. We also demonstrate strong universal consistency and an oracle inequality. Estimators based on histograms and dyadic partitions illustrate the proposed rules.
On the Convergence of Eigenspaces in Kernel Principal Component Analysis
Zwald, Laurent, Blanchard, Gilles
This paper presents a non-asymptotic statistical analysis of Kernel-PCA with a focus different from the one proposed in previous work on this topic. Here instead of considering the reconstruction error of KPCA we are interested in approximation error bounds for the eigenspaces themselves. We prove an upper bound depending on the spacing between eigenvalues but not on the dimensionality of the eigenspace. As a consequence this allows to infer stability results for these estimated spaces.
Visual Encoding with Jittering Eyes
Under natural viewing conditions, small movements of the eye and body prevent the maintenance of a steady direction of gaze. It is known that stimuli tend to fade when they are stabilized on the retina for several seconds. However, it is unclear whether the physiological self-motion of the retinal image serves a visual purpose during the brief periods of natural visual fixation. This study examines the impact of fixational instability on the statistics of visual input to the retina and on the structure of neural activity in the early visual system. Fixational instability introduces fluctuations in the retinal input signals that, in the presence of natural images, lack spatial correlations. These input fluctuations strongly influence neural activity in a model of the LGN. They decorrelate cell responses, even if the contrast sensitivity functions of simulated cells are not perfectly tuned to counterbalance the power-law spectrum of natural images. A decorrelation of neural activity has been proposed to be beneficial for discarding statistical redundancies in the input signals. Fixational instability might, therefore, contribute to establishing efficient representations of natural stimuli.