Plotting

 Country


VecLP: A Realtime Video Recommendation System for Live TV Programs

AAAI Conferences

We propose VecLP, a novel Internet Video recommendation system working for Live TV Programs in this paper. Given little information on the live TV programs, our proposed VecLP system can effectively collect necessary information on both the programs and the subscribers as well as a large volume of related online videos, and then recommend the relevant Internet videos to the subscribers. For that, the key frames are firstly detected from the live TV programs, and then visual and textual features are extracted from these frames to enhance the understanding of the TV broadcasts. Furthermore, by utilizing the subscribers' profiles and their social relationships, a user preference model is constructed, which greatly improves the diversity of the recommendations in our system. The subscriber's browsing history is also recorded and used to make a further personalized recommendation. This work also illustrates how our proposed VecLP system makes it happen. Finally, we dispose some sort of new recommendation strategies in use at the system to meet special needs from diverse live TV programs and throw light upon how to fuse these strategies.


Learning Predictable and Discriminative Attributes for Visual Recognition

AAAI Conferences

Utilizing attributes for visual recognition has attracted increasingly interest because attributes can effectively bridge the semantic gap between low-level visual features and high-level semantic labels. In this paper, we propose a novel method for learning predictable and discriminative attributes. Specifically, we require the learned attributes can be reliably predicted from visual features, and discover the inherent discriminative structure of data. In addition, we propose to exploit the intra-category locality of data to overcome the intra-category variance in visual data. We conduct extensive experiments on Animals with Attributes (AwA) and Caltech256 datasets, and the results demonstrate that the proposed method achieves state-of-the-art performance.


Cupid: Commitments in Relational Algebra

AAAI Conferences

We propose Cupid, a language for specifying commitments that supports their information-centric aspects, and offers crucial benefits. One, Cupid is first-order, enabling a systematic treatment of commitment instances. Two, Cupid supports features needed for real-world scenarios such as deadlines, nested commitments, and complex event expressions for capturing the lifecycle of commitment instances. Three, Cupid maps to relational database queries and thus provides a set-based semantics for retrieving commitment instances in states such as being violated, discharged, and so on. We prove that Cupid queries are safe. Four, to aid commitment modelers, we propose the notion of well-identified commitments, and finitely violable and finitely expirable commitments. We give syntactic restrictions for obtaining such commitments.


On Computing Maximal Subsets of Clauses that Must Be Satisfiable with Possibly Mutually-Contradictory Assumptive Contexts

AAAI Conferences

An original method for the extraction of one maximal subset of a set of Boolean clauses that must be satisfiable with possibly mutually contradictory assumptive contexts is motivated and experimented. Noticeably, it performs a direct computation and avoids the enumeration of all subsets that are satisfiable with at least one of the contexts. The method applies for subsets that are maximal with respect to inclusion or cardinality.


Towards Knowledge-Driven Annotation

AAAI Conferences

While the Web of data is attracting increasing interest and rapidly growing in size, the major support of information on the surface Web are still multimedia documents. Semantic annotation of texts is one of the main processes that are intended to facilitate meaning-based information exchange between computational agents. However, such annotation faces several challenges such as the heterogeneity of natural language expressions, the heterogeneity of documents structure and context dependencies. While a broad range of annotation approaches rely mainly or partly on the target textual context to disambiguate the extracted entities, in this paper we present an approach that relies mainly on formalized-knowledge expressed in RDF datasets to categorize and disambiguate noun phrases. In the proposed method, we represent the reference knowledge bases as co-occurrence matrices and the disambiguation problem as a 0-1 Integer Linear Programming (ILP) problem. The proposed approach is unsupervised and can be ported to any RDF knowledge base. The system implementing this approach, called KODA, shows very promising results w.r.t. state-of-the-art annotation tools in cross-domain experimentations.


Solving Uncertain MDPs with Objectives that Are Separable over Instantiations of Model Uncertainty

AAAI Conferences

Markov Decision Problems, MDPs offer an effective mechanism for planning under uncertainty. However, due to unavoidable uncertainty over models, it is difficult to obtain an exact specification of an MDP. We are interested in solving MDPs, where transition and reward functions are not exactly specified. Existing research has primarily focussed on computing infinite horizon stationary policies when optimizing robustness, regret and percentile based objectives. We focus specifically on finite horizon problems with a special emphasis on objectives that are separable over individual instantiations of model uncertainty (i.e., objectives that can be expressed as a sum over instantiations of model uncertainty): (a) First, we identify two separable objectives for uncertain MDPs: Average Value Maximization (AVM) and Confidence Probability Maximisation (CPM). (b) Second, we provide optimization based solutions to compute policies for uncertain MDPs with such objectives. In particular, we exploit the separability of AVM and CPM objectives by employing Lagrangian dual decomposition(LDD). (c) Finally, we demonstrate the utility of the LDD approach on a benchmark problem from the literature.


Coupled Collaborative Filtering for Context-aware Recommendation

AAAI Conferences

Context-aware features have been widely recognized as important factors in recommender systems. However, as a major technique in recommender systems, traditional Collaborative Filtering (CF) does not provide a straight-forward way of integrating the context-aware information into personal recommendation. We propose a Coupled Collaborative Filtering (CCF) model to measure the contextual information and use it to improve recommendations. In the proposed approach, coupled similarity computation is designed to be calculated by interitem, intra-context and inter-context interactions among item, user and context-ware factors. Experiments based on different types of CF models demonstrate the effectiveness of our design.


Language Independent Feature Extractor

AAAI Conferences

We propose a new customizable tool, Language Independent Feature Extractor (LIFE), which models the inherent patterns of any language and extracts relevant features of thelanguage. There are two contributions of this work: (1) no labeled data is necessary to train LIFE (It works when a sufficient number of unlabeled documents are given), and (2) LIFE is designed to be applicable to any language. We proved the usefulness of LIFE by experimental results of time information extraction.


HVAC-Aware Occupancy Scheduling (Extended Abstract)

AAAI Conferences

My research focuses on developing innovative ways to control Heating, Ventilation, and Air Conditioning (HVAC) and schedule occupancy flows in smart buildings to reduce our ecological footprint (and energy bills). We look at the potential for integrating building operations with room booking and meeting scheduling. Specifically, we improve on the effectiveness of energy-aware room-booking and occupancy scheduling approaches, by allowing the scheduling decisions to rely on an explicit model of the building's occupancy-based HVAC control. From computational standpoint, this is a challenging topic as HVAC models are inherently non-linear non-convex, and occupancy scheduling models additionally introduce discrete variables capturing the time slot and location at which each activity is scheduled. The mechanism needs to tradeoff minimizing energy cost against addressing occupancy thermal comfort and control feasibility in a highly dynamic and uncertain system.


Multi-Agent Dynamic Coupling for Cooperative Vehicles Modeling

AAAI Conferences

Cooperative Intelligent Transportation Systems (C-ITS) are complex systems well-suited to a multi-agent modeling. We propose a multi-agent based modeling of a C-ITS, that couples 3 dynamics (physical, informational and control dynamics) in order to ensure a smooth cooperation between non cooperative and cooperative vehicles, that communicate with each other (V2V communication) and the infrastructure (I2V and V2I communication). We present our multi-agent model, tested through simulations using real traffic data and integrated into our extension of the Multi-model Open-source Vehicular-traffic SIMulator (MovSim).