Not enough data to create a plot.
Try a different view from the menu above.
Country
Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates
Allen-Zhu, Zeyuan, Liao, Zhenyu, Orecchia, Lorenzo
In this paper, we provide a novel construction of the linear-sized spectral sparsifiers of Batson, Spielman and Srivastava [BSS14]. While previous constructions required $\Omega(n^4)$ running time [BSS14, Zou12], our sparsification routine can be implemented in almost-quadratic running time $O(n^{2+\varepsilon})$. The fundamental conceptual novelty of our work is the leveraging of a strong connection between sparsification and a regret minimization problem over density matrices. This connection was known to provide an interpretation of the randomized sparsifiers of Spielman and Srivastava [SS11] via the application of matrix multiplicative weight updates (MWU) [CHS11, Vis14]. In this paper, we explain how matrix MWU naturally arises as an instance of the Follow-the-Regularized-Leader framework and generalize this approach to yield a larger class of updates. This new class allows us to accelerate the construction of linear-sized spectral sparsifiers, and give novel insights on the motivation behind Batson, Spielman and Srivastava [BSS14].
Generalized Additive Model Selection
Chouldechova, Alexandra, Hastie, Trevor
We introduce GAMSEL (Generalized Additive Model Selection), a penalized likelihood approach for fitting sparse generalized additive models in high dimension. Our method interpolates between null, linear and additive models by allowing the effect of each variable to be estimated as being either zero, linear, or a low-complexity curve, as determined by the data. We present a blockwise coordinate descent procedure for efficiently optimizing the penalized likelihood objective over a dense grid of the tuning parameter, producing a regularization path of additive models. We demonstrate the performance of our method on both real and simulated data examples, and compare it with existing techniques for additive model selection.
Semi-Stochastic Gradient Descent Methods
Koneฤnรฝ, Jakub, Richtรกrik, Peter
In this paper we study the problem of minimizing the average of a large number ($n$) of smooth convex loss functions. We propose a new method, S2GD (Semi-Stochastic Gradient Descent), which runs for one or several epochs in each of which a single full gradient and a random number of stochastic gradients is computed, following a geometric law. The total work needed for the method to output an $\varepsilon$-accurate solution in expectation, measured in the number of passes over data, or equivalently, in units equivalent to the computation of a single gradient of the loss, is $O((\kappa/n)\log(1/\varepsilon))$, where $\kappa$ is the condition number. This is achieved by running the method for $O(\log(1/\varepsilon))$ epochs, with a single gradient evaluation and $O(\kappa)$ stochastic gradient evaluations in each. The SVRG method of Johnson and Zhang arises as a special case. If our method is limited to a single epoch only, it needs to evaluate at most $O((\kappa/\varepsilon)\log(1/\varepsilon))$ stochastic gradients. In contrast, SVRG requires $O(\kappa/\varepsilon^2)$ stochastic gradients. To illustrate our theoretical results, S2GD only needs the workload equivalent to about 2.1 full gradient evaluations to find an $10^{-6}$-accurate solution for a problem with $n=10^9$ and $\kappa=10^3$.
On the Generalization of the C-Bound to Structured Output Ensemble Methods
Laviolette, Franรงois, Morvant, Emilie, Ralaivola, Liva, Roy, Jean-Francis
This paper generalizes an important result from the PAC-Bayesian literature for binary classification to the case of ensemble methods for structured outputs. We prove a generic version of the \Cbound, an upper bound over the risk of models expressed as a weighted majority vote that is based on the first and second statistical moments of the vote's margin. This bound may advantageously $(i)$ be applied on more complex outputs such as multiclass labels and multilabel, and $(ii)$ allow to consider margin relaxations. These results open the way to develop new ensemble methods for structured output prediction with PAC-Bayesian guarantees.
Linguistic Harbingers of Betrayal: A Case Study on an Online Strategy Game
Niculae, Vlad, Kumar, Srijan, Boyd-Graber, Jordan, Danescu-Niculescu-Mizil, Cristian
Interpersonal relations are fickle, with close friendships often dissolving into enmity. In this work, we explore linguistic cues that presage such transitions by studying dyadic interactions in an online strategy game where players form alliances and break those alliances through betrayal. We characterize friendships that are unlikely to last and examine temporal patterns that foretell betrayal. We reveal that subtle signs of imminent betrayal are encoded in the conversational patterns of the dyad, even if the victim is not aware of the relationship's fate. In particular, we find that lasting friendships exhibit a form of balance that manifests itself through language. In contrast, sudden changes in the balance of certain conversational attributes---such as positive sentiment, politeness, or focus on future planning---signal impending betrayal.
Convex Risk Minimization and Conditional Probability Estimation
Telgarsky, Matus, Dudรญk, Miroslav, Schapire, Robert
This paper proves, in very general settings, that convex risk minimization is a procedure to select a unique conditional probability model determined by the classification problem. Unlike most previous work, we give results that are general enough to include cases in which no minimum exists, as occurs typically, for instance, with standard boosting algorithms. Concretely, we first show that any sequence of predictors minimizing convex risk over the source distribution will converge to this unique model when the class of predictors is linear (but potentially of infinite dimension). Secondly, we show the same result holds for \emph{empirical} risk minimization whenever this class of predictors is finite dimensional, where the essential technical contribution is a norm-free generalization bound.
Learning with incremental iterative regularization
Rosasco, Lorenzo, Villa, Silvia
Within a statistical learning setting, we propose and study an iterative regularization algorithm for least squares defined by an incremental gradient method. In particular, we show that, if all other parameters are fixed a priori, the number of passes over the data (epochs) acts as a regularization parameter, and prove strong universal consistency, i.e. almost sure convergence of the risk, as well as sharp finite sample bounds for the iterates. Our results are a step towards understanding the effect of multiple epochs in stochastic gradient techniques in machine learning and rely on integrating statistical and optimization results.
Training Restricted Boltzmann Machines via the Thouless-Anderson-Palmer Free Energy
Gabriรฉ, Marylou, Tramel, Eric W., Krzakala, Florent
Restricted Boltzmann machines are undirected neural networks which have been shown to be effective in many applications, including serving as initializations for training deep multi-layer neural networks. One of the main reasons for their success is the existence of efficient and practical stochastic algorithms, such as contrastive divergence, for unsupervised training. We propose an alternative deterministic iterative procedure based on an improved mean field method from statistical physics known as the Thouless-Anderson-Palmer approach. We demonstrate that our algorithm provides performance equal to, and sometimes superior to, persistent contrastive divergence, while also providing a clear and easy to evaluate objective function. We believe that this strategy can be easily generalized to other models as well as to more accurate higher-order approximations, paving the way for systematic improvements in training Boltzmann machines with hidden units.
On the properties of variational approximations of Gibbs posteriors
Alquier, Pierre, Ridgway, James, Chopin, Nicolas
The PAC-Bayesian approach is a powerful set of techniques to derive non- asymptotic risk bounds for random estimators. The corresponding optimal distribution of estimators, usually called the Gibbs posterior, is unfortunately intractable. One may sample from it using Markov chain Monte Carlo, but this is often too slow for big datasets. We consider instead variational approximations of the Gibbs posterior, which are fast to compute. We undertake a general study of the properties of such approximations. Our main finding is that such a variational approximation has often the same rate of convergence as the original PAC-Bayesian procedure it approximates. We specialise our results to several learning tasks (classification, ranking, matrix completion),discuss how to implement a variational approximation in each case, and illustrate the good properties of said approximation on real datasets.
Learning with Square Loss: Localization through Offset Rademacher Complexity
Liang, Tengyuan, Rakhlin, Alexander, Sridharan, Karthik
We consider regression with square loss and general classes of functions without the boundedness assumption. We introduce a notion of offset Rademacher complexity that provides a transparent way to study localization both in expectation and in high probability. For any (possibly non-convex) class, the excess loss of a two-step estimator is shown to be upper bounded by this offset complexity through a novel geometric inequality. In the convex case, the estimator reduces to an empirical risk minimizer. The method recovers the results of \citep{RakSriTsy15} for the bounded case while also providing guarantees without the boundedness assumption.