Not enough data to create a plot.
Try a different view from the menu above.
Country
Designing Markets for Prediction
Chen, Yiling (Harvard University) | Pennock, David M. (Yahoo! Research)
In this article, we survey a number of mechanisms created to elicit predictions, many newly proposed within the last decade. We focus on the engineering questions: How do they work and why? What factors and goals are most important in their design? The primary goal of a prediction mechanism is to obtain and aggregate dispersed information, which often exists in tacit forms as beliefs, opinions, or judgements of agents. Coalescing information is a necessary first step for decision making in almost all domains. For example, consider seasonal influenza, a significant cause of illness and death around the world. Although it recurs every year, the geographic location, timing, magnitude, and duration of outbreaks vary widely. Many people possess relevant pieces of the full information puzzle, including doctors who meet patients, clinical microbiologists who perform respiratory culture tests, pharmacists who fill prescriptions, people who have the flu, and people who know people who have the flu.
Dynamic Incentive Mechanisms
Parkes, David C. (Harvard University) | Cavallo, Ruggiero (University of Pennsylvania) | Constantin, Florin (Georgia Institute of Technology) | Singh, Satinder (University of Michigan)
Much of AI is concerned with the design of intelligent agents. A complementary challenge is to understand how to design โrules of encounterโ by which to promote simple, robust and beneficial interactions between multiple intelligent agents. This is a natural development, as AI is increasingly used for automated decision making in real-world settings. As we extend the ideas of mechanism design from economic theory, the mechanisms (or rules) become algorithmic and many new challenges surface. Starting with a short background on mechanism design theory, the aim of this paper is to provide a nontechnical exposition of recent results on dynamic incentive mechanisms, which provide rules for the coordination of agents in sequential decision problems. The framework of dynamic mechanism design embraces coordinated decision-making both in the context of uncertainty about the world external to an agent and also in regard to the dynamics of agent preferences. In addition to tracing some recent developments, we point to ongoing research challenges.
A Factorial Experiment on Scalability of Search Based Software Testing
Mehrmand, Arash, Feldt, Robert
Software testing is an expensive process, which is vital in the industry. Construction of the test-data in software testing requires the major cost and to decide which method to use in order to generate the test data is important. This paper discusses the efficiency of search-based algorithms (preferably genetic algorithm) versus random testing, in soft- ware test-data generation. This study differs from all previous studies due to sample programs (SUTs) which are used. Since we want to in- crease the complexity of SUTs gradually, and the program generation is automatic as well, Grammatical Evolution is used to guide the program generation. SUTs are generated according to the grammar we provide, with different levels of complexity. SUTs will first undergo genetic al- gorithm and then random testing. Based on the test results, this paper recommends one method to use for automation of software testing.
Learning Hidden Markov Models using Non-Negative Matrix Factorization
Cybenko, George, Crespi, Valentino
The Baum-Welsh algorithm together with its derivatives and variations has been the main technique for learning Hidden Markov Models (HMM) from observational data. We present an HMM learning algorithm based on the non-negative matrix factorization (NMF) of higher order Markovian statistics that is structurally different from the Baum-Welsh and its associated approaches. The described algorithm supports estimation of the number of recurrent states of an HMM and iterates the non-negative matrix factorization (NMF) algorithm to improve the learned HMM parameters. Numerical examples are provided as well.
Node harvest
When choosing a suitable technique for regression and classification with multivariate predictor variables, one is often faced with a tradeoff between interpretability and high predictive accuracy. To give a classical example, classification and regression trees are easy to understand and interpret. Tree ensembles like Random Forests provide usually more accurate predictions. Yet tree ensembles are also more difficult to analyze than single trees and are often criticized, perhaps unfairly, as `black box' predictors. Node harvest is trying to reconcile the two aims of interpretability and predictive accuracy by combining positive aspects of trees and tree ensembles. Results are very sparse and interpretable and predictive accuracy is extremely competitive, especially for low signal-to-noise data. The procedure is simple: an initial set of a few thousand nodes is generated randomly. If a new observation falls into just a single node, its prediction is the mean response of all training observation within this node, identical to a tree-like prediction. A new observation falls typically into several nodes and its prediction is then the weighted average of the mean responses across all these nodes. The only role of node harvest is to `pick' the right nodes from the initial large ensemble of nodes by choosing node weights, which amounts in the proposed algorithm to a quadratic programming problem with linear inequality constraints. The solution is sparse in the sense that only very few nodes are selected with a nonzero weight. This sparsity is not explicitly enforced. Maybe surprisingly, it is not necessary to select a tuning parameter for optimal predictive accuracy. Node harvest can handle mixed data and missing values and is shown to be simple to interpret and competitive in predictive accuracy on a variety of data sets.
Autoregressive Kernels For Time Series
We propose in this work a new family of kernels for variable-length time series. Our work builds upon the vector autoregressive (VAR) model for multivariate stochastic processes: given a multivariate time series x, we consider the likelihood function p_{\theta}(x) of different parameters \theta in the VAR model as features to describe x. To compare two time series x and x', we form the product of their features p_{\theta}(x) p_{\theta}(x') which is integrated out w.r.t \theta using a matrix normal-inverse Wishart prior. Among other properties, this kernel can be easily computed when the dimension d of the time series is much larger than the lengths of the considered time series x and x'. It can also be generalized to time series taking values in arbitrary state spaces, as long as the state space itself is endowed with a kernel \kappa. In that case, the kernel between x and x' is a a function of the Gram matrices produced by \kappa on observations and subsequences of observations enumerated in x and x'. We describe a computationally efficient implementation of this generalization that uses low-rank matrix factorization techniques. These kernels are compared to other known kernels using a set of benchmark classification tasks carried out with support vector machines.
Exact Synchronization for Finite-State Sources
Travers, Nicholas F., Crutchfield, James P.
We analyze how an observer synchronizes to the internal state of a finite-state information source, using the epsilon-machine causal representation. Here, we treat the case of exact synchronization, when it is possible for the observer to synchronize completely after a finite number of observations. The more difficult case of strictly asymptotic synchronization is treated in a sequel. In both cases, we find that an observer, on average, will synchronize to the source state exponentially fast and that, as a result, the average accuracy in an observer's predictions of the source output approaches its optimal level exponentially fast as well. Additionally, we show here how to analytically calculate the synchronization rate for exact epsilon-machines and provide an efficient polynomial-time algorithm to test epsilon-machines for exactness.
Asymptotic Synchronization for Finite-State Sources
Travers, Nicholas F., Crutchfield, James P.
We extend a recent synchronization analysis of exact finite-state sources to nonexact sources for which synchronization occurs only asymptotically. Although the proof methods are quite different, the primary results remain the same. We find that an observer's average uncertainty in the source state vanishes exponentially fast and, as a consequence, an observer's average uncertainty in predicting future output converges exponentially fast to the source entropy rate.
On Elementary Loops of Logic Programs
Gebser, Martin, Lee, Joohyung, Lierler, Yuliya
Using the notion of an elementary loop, Gebser and Schaub refined the theorem on loop formulas due to Lin and Zhao by considering loop formulas of elementary loops only. In this article, we reformulate their definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we show that the corresponding problem is {\sf coNP}-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs due to Ben-Eliyahu and Dechter. Like an HCF program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body.
The Local Optimality of Reinforcement Learning by Value Gradients, and its Relationship to Policy Gradient Learning
Fairbank, Michael, Alonso, Eduardo
In this theoretical paper we are concerned with the problem of learning a value function by a smooth general function approximator, to solve a deterministic episodic control problem in a large continuous state space. It is shown that learning the gradient of the value-function at every point along a trajectory generated by a greedy policy is a sufficient condition for the trajectory to be locally extremal, and often locally optimal, and we argue that this brings greater efficiency to value-function learning. This contrasts to traditional value-function learning in which the value-function must be learnt over the whole of state space. It is also proven that policy-gradient learning applied to a greedy policy on a value-function produces a weight update equivalent to a value-gradient weight update, which provides a surprising connection between these two alternative paradigms of reinforcement learning, and a convergence proof for control problems with a value function represented by a general smooth function approximator.