Not enough data to create a plot.
Try a different view from the menu above.
Country
D-FLAT: Declarative Problem Solving Using Tree Decompositions and Answer-Set Programming
Bliem, Bernhard, Morak, Michael, Woltran, Stefan
In this work, we propose Answer-Set Programming (ASP) as a tool for rapid prototyping of dynamic programming algorithms based on tree decompositions. In fact, many such algorithms have been designed, but only a few of them found their way into implementation. The main obstacle is the lack of easy-to-use systems which (i) take care of building a tree decomposition and (ii) provide an interface for declarative specifications of dynamic programming algorithms. In this paper, we present D-FLAT, a novel tool that relieves the user of having to handle all the technical details concerned with parsing, tree decomposition, the handling of data structures, etc. Instead, it is only the dynamic programming algorithm itself which has to be specified in the ASP language. D-FLAT employs an ASP solver in order to compute the local solutions in the dynamic programming algorithm. In the paper, we give a few examples illustrating the use of D-FLAT and describe the main features of the system. Moreover, we report experiments which show that ASP-based D-FLAT encodings for some problems outperform monolithic ASP encodings on instances of small treewidth.
Designing various component analysis at will
Kimura, Akisato, Sugiyama, Masashi, Hitoshi, Sakano, Kameoka, Hirokazu
This paper provides a generic framework of component analysis (CA) methods introducing a new expression for scatter matrices and Gram matrices, called Generalized Pairwise Expression (GPE). This expression is quite compact but highly powerful: The framework includes not only (1) the standard CA methods but also (2) several regularization techniques, (3) weighted extensions, (4) some clustering methods, and (5) their semi-supervised extensions. This paper also presents quite a simple methodology for designing a desired CA method from the proposed framework: Adopting the known GPEs as templates, and generating a new method by combining these templates appropriately.
Modularity-Based Clustering for Network-Constrained Trajectories
Mahrsi, Mohamed Khalil El, Rossi, Fabrice
We present a novel clustering approach for moving object trajectories that are constrained by an underlying road network. The approach builds a similarity graph based on these trajectories then uses modularity-optimization hiearchical graph clustering to regroup trajectories with similar profiles. Our experimental study shows the superiority of the proposed approach over classic hierarchical clustering and gives a brief insight to visualization of the clustering results.
Automatic Relevance Determination in Nonnegative Matrix Factorization with the \beta-Divergence
Tan, Vincent Y. F., Fรฉvotte, Cรฉdric
This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the \beta-divergence. The \beta-divergence is a family of cost functions that includes the squared Euclidean distance, Kullback-Leibler and Itakura-Saito divergences as special cases. Learning the model order is important as it is necessary to strike the right balance between data fidelity and overfitting. We propose a Bayesian model based on automatic relevance determination in which the columns of the dictionary matrix and the rows of the activation matrix are tied together through a common scale parameter in their prior. A family of majorization-minimization algorithms is proposed for maximum a posteriori (MAP) estimation. A subset of scale parameters is driven to a small lower bound in the course of inference, with the effect of pruning the corresponding spurious components. We demonstrate the efficacy and robustness of our algorithms by performing extensive experiments on synthetic data, the swimmer dataset, a music decomposition example and a stock price prediction task.
Relative Expressiveness of Defeasible Logics
We address the relative expressiveness of defeasible logics in the framework DL. Relative expressiveness is formulated as the ability to simulate the reasoning of one logic within another logic. We show that such simulations must be modular, in the sense that they also work if applied only to part of a theory, in order to achieve a useful notion of relative expressiveness. We present simulations showing that logics in DL with and without the capability of team defeat are equally expressive. We also show that logics that handle ambiguity differently -- ambiguity blocking versus ambiguity propagating -- have distinct expressiveness, with neither able to simulate the other under a different formulation of expressiveness.
A Scalable CUR Matrix Decomposition Algorithm: Lower Time Complexity and Tighter Bound
Wang, Shusen, Zhang, Zhihua, Li, Jian
The CUR matrix decomposition is an important extension of Nystr\"{o}m approximation to a general matrix. It approximates any data matrix in terms of a small number of its columns and rows. In this paper we propose a novel randomized CUR algorithm with an expected relative-error bound. The proposed algorithm has the advantages over the existing relative-error CUR algorithms that it possesses tighter theoretical bound and lower time complexity, and that it can avoid maintaining the whole data matrix in main memory. Finally, experiments on several real-world datasets demonstrate significant improvement over the existing relative-error algorithms.
Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization
Kumar, Abhishek, Sindhwani, Vikas, Kambadur, Prabhanjan
The separability assumption (Donoho & Stodden, 2003; Arora et al., 2012) turns non-negative matrix factorization (NMF) into a tractable problem. Recently, a new class of provably-correct NMF algorithms have emerged under this assumption. In this paper, we reformulate the separable NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. From this geometric perspective, we derive new separable NMF algorithms that are highly scalable and empirically noise robust, and have several other favorable properties in relation to existing methods. A parallel implementation of our algorithm demonstrates high scalability on shared- and distributed-memory machines.
Predicting human preferences using the block structure of complex social networks
Guimera, Roger, Llorente, Alejandro, Moro, Esteban, Sales-Pardo, Marta
With ever-increasing available data, predicting individuals' preferences and helping them locate the most relevant information has become a pressing need. Understanding and predicting preferences is also important from a fundamental point of view, as part of what has been called a "new" computational social science. Here, we propose a novel approach based on stochastic block models, which have been developed by sociologists as plausible models of complex networks of social interactions. Our model is in the spirit of predicting individuals' preferences based on the preferences of others but, rather than fitting a particular model, we rely on a Bayesian approach that samples over the ensemble of all possible models. We show that our approach is considerably more accurate than leading recommender algorithms, with major relative improvements between 38% and 99% over industry-level algorithms. Besides, our approach sheds light on decision-making processes by identifying groups of individuals that have consistently similar preferences, and enabling the analysis of the characteristics of those groups.
Unfolding Latent Tree Structures using 4th Order Tensors
Ishteva, Mariya, Park, Haesun, Song, Le
Discovering the latent structure from many observed variables is an important yet challenging learning task. Existing approaches for discovering latent structures often require the unknown number of hidden states as an input. In this paper, we propose a quartet based approach which is \emph{agnostic} to this number. The key contribution is a novel rank characterization of the tensor associated with the marginal distribution of a quartet. This characterization allows us to design a \emph{nuclear norm} based test for resolving quartet relations. We then use the quartet test as a subroutine in a divide-and-conquer algorithm for recovering the latent tree structure. Under mild conditions, the algorithm is consistent and its error probability decays exponentially with increasing sample size. We demonstrate that the proposed approach compares favorably to alternatives. In a real world stock dataset, it also discovers meaningful groupings of variables, and produces a model that fits the data better.
Feature Subset Selection for Software Cost Modelling and Estimation
Papatheocharous, Efi, Papadopoulos, Harris, Andreou, Andreas S.
Feature selection has been recently used in the area of software engineering for improving the accuracy and robustness of software cost models. The idea behind selecting the most informative subset of features from a pool of available cost drivers stems from the hypothesis that reducing the dimensionality of datasets will significantly minimise the complexity and time required to reach to an estimation using a particular modelling technique. This work investigates the appropriateness of attributes, obtained from empirical project databases and aims to reduce the cost drivers used while preserving performance. Finding suitable subset selections that may cater improved predictions may be considered as a pre-processing step of a particular technique employed for cost estimation (filter or wrapper) or an internal (embedded) step to minimise the fitting error. This paper compares nine relatively popular feature selection methods and uses the empirical values of selected attributes recorded in the ISBSG and Desharnais datasets to estimate software development effort.