Plotting

 Country



Active Inference in Concept Learning

Neural Information Processing Systems

People are active experimenters, not just passive observers, constantly seeking new information relevant to their goals. A reasonable approach to active information gathering is to ask questions and conduct experiments that maximize the expected information gain, given current beliefs (Fedorov 1972, MacKay 1992, Oaksford & Chater 1994). In this paper we present results on an exploratory experiment designed to study people's active information gathering behavior on a concept learning task (Tenenbaum 2000). The results of the experiment are analyzed in terms of the expected information gain of the questions asked by subjects. In scientific inquiry and in everyday life, people seek out information relevant to perceptual and cognitive tasks.


Spike-Timing-Dependent Learning for Oscillatory Networks

Neural Information Processing Systems

The model structure is an abstrac- tion of the hippocampus or the olfactory cortex. We propose a simple generalized Hebbian rule, using temporal-activity-dependent LTP and LTD, to encode both magnitudes and phases of oscillatory patterns into the synapses in the network. After learning, the model responds resonantly to inputs which have been learned (or, for networks which operate essentially linearly, to linear combinations of learned inputs), but negligibly to other input patterns. Encoding both amplitude and phase enhances computational capacity, for which the price is having to learn both the excitatory-to-excitatory and the excitatory-to-inhibitory connections. Our model puts contraints on the form of the learning kernal A(r) that should be experimenally observed, e.g., for small oscillation frequencies, it requires that the overall LTP dominates the overall LTD, but this requirement should be modified if the stored oscillations are of high frequencies.


Beyond Maximum Likelihood and Density Estimation: A Sample-Based Criterion for Unsupervised Learning of Complex Models

Neural Information Processing Systems

Two well known classes of unsupervised procedures that can be cast in this manner are generative and recoding models. In a generative unsupervised framework, the environment generates training exampleswhich we will refer to as observations-by sampling from one distribution; the other distribution is embodied in the model. Examples of generative frameworks are mixtures of Gaussians (MoG) [2], factor analysis [4], and Boltzmann machines [8]. In the recoding unsupervised framework, the model transforms points from an obser- vation space to an output space, and the output distribution is compared either to a reference distribution or to a distribution derived from the output distribution.


Structure Learning in Human Causal Induction

Neural Information Processing Systems

We use graphical models to explore the question of how people learn simple causalrelationships from data. The two leading psychological theories canboth be seen as estimating the parameters of a fixed graph. We argue that a complete account of causal induction should also consider how people learn the underlying causal graph structure, and we propose to model this inductive process as a Bayesian inference. Our argument is supported through the discussion of three data sets. 1 Introduction Causality plays a central role in human mental life. Our behavior depends upon our understanding ofthe causal structure of our environment, and we are remarkably good at inferring causation from mere observation. Constructing formal models of causal induction is currently a major focus of attention in computer science [7], psychology [3,6], and philosophy [5].This paper attempts to connect these literatures, by framing the debate between two major psychological theories in the computational language of graphical models. We show that existing theories equate human causal induction with maximum likelihood parameter estimationon a fixed graphical structure, and we argue that to fully account for human behavioral data, we must also postulate that people make Bayesian inferences about the underlying causal graph structure itself.


Decomposition of Reinforcement Learning for Admission Control of Self-Similar Call Arrival Processes

Neural Information Processing Systems

In multi-service communications networks, such as Asynchronous Transfer Mode (ATM) networks, resource control is of crucial importance for the network operator as well as for the users. The objective is to maintain the service quality while maximizing the operator's revenue. At the call level, service quality (Grade of Service) is measured in terms of call blocking probabilities, and the key resource to be controlled is bandwidth. Network routing and call admission control (CAC) are two such resource control problems. Markov decision processes offer a framework for optimal CAC and routing [1]. By modelling thedynamics of the network with traffic and computing control policies using dynamic programming [2], resource control is optimized. A standard assumption in such models is that calls arrive according to Poisson processes. This makes the models of the dynamics relatively simple. Although the Poisson assumption is valid for most user-initiated requests in communications networks, a number of studies [3, 4, 5] indicate that many types of arrival processesin wide-area networks as well as in local area networks are statistically selfsimilar.


Hierarchical Memory-Based Reinforcement Learning

Neural Information Processing Systems

A key challenge for reinforcement learning is scaling up to large partially observable domains. In this paper, we show how a hierarchy ofbehaviors can be used to create and select among variable length short-term memories appropriate for a task. At higher levels inthe hierarchy, the agent abstracts over lower-level details and looks back over a variable number of high-level decisions in time. We formalize this idea in a framework called Hierarchical Suffix Memory (HSM). HSM uses a memory-based SMDP learning method to rapidly propagate delayed reward across long decision sequences.


Hippocampally-Dependent Consolidation in a Hierarchical Model of Neocortex

Neural Information Processing Systems

In memory consolidation, declarative memories which initially require the hippocampus for their recall, ultimately become independent of it. Consolidation has been the focus of numerous experimental and qualitative modelingstudies, but only little quantitative exploration. We present a consolidation model in which hierarchical connections in the cortex, that initially instantiate purely semantic information acquired through probabilistic unsupervised learning, come to instantiate episodic information aswell. The hippocampus is responsible for helping complete partial input patterns before consolidation is complete, while also training thecortex to perform appropriate completion by itself.



Learning Sparse Image Codes using a Wavelet Pyramid Architecture

Neural Information Processing Systems

We show how a wavelet basis may be adapted to best represent natural images in terms of sparse coefficients. The wavelet basis, which may be either complete or overcomplete, is specified by a small number of spatial functions which are repeated across space and combined in a recursive fashion so as to be self-similar across scale. These functions are adapted to minimize the estimated code length under a model that assumes images are composed of a linear superposition of sparse, independent components. When adapted to natural images, the wavelet bases take on different orientations and they evenly tile the orientation domain, in stark contrast to the standard, non-oriented wavelet bases used in image compression. When the basis set is allowed to be overcomplete, it also yields higher coding efficiency than standard wavelet bases. 1 Introduction The general problem we address here is that of learning efficient codes for representing naturalimages.