Not enough data to create a plot.
Try a different view from the menu above.
South America
Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
We introduce Inference-Time Intervention (ITI), a technique designed to enhance the "truthfulness" of large language models (LLMs). ITI operates by shifting model activations during inference, following a set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from 32.5% to 65.1%. We identify a trade-off between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.
FairMedFM: Fairness Benchmarking for Medical Imaging Foundation Models
The advent of foundation models (FMs) in healthcare offers unprecedented opportunities to enhance medical diagnostics through automated classification and segmentation tasks. However, these models also raise significant concerns about their fairness, especially when applied to diverse and underrepresented populations in healthcare applications. Currently, there is a lack of comprehensive benchmarks, standardized pipelines, and easily adaptable libraries to evaluate and understand the fairness performance of FMs in medical imaging, leading to considerable challenges in formulating and implementing solutions that ensure equitable outcomes across diverse patient populations. To fill this gap, we introduce FairMedFM, a fairness benchmark for FM research in medical imaging.
ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Cédric Rommel 1 Victor Letzelter 1,3
We propose ManiPose, a manifold-constrained multi-hypothesis model for humanpose 2D-to-3D lifting. We provide theoretical and empirical evidence that, due to the depth ambiguity inherent to monocular 3D human pose estimation, traditional regression models suffer from pose-topology consistency issues, which standard evaluation metrics (MPJPE, P-MPJPE and PCK) fail to assess. ManiPose addresses depth ambiguity by proposing multiple candidate 3D poses for each 2D input, each with its estimated plausibility.
Exact recovery and Bregman hard clustering of node-attributed Stochastic Block Model
Network clustering tackles the problem of identifying sets of nodes (communities) that have similar connection patterns. However, in many scenarios, nodes also have attributes that are correlated with the clustering structure. Thus, network information (edges) and node information (attributes) can be jointly leveraged to design high-performance clustering algorithms. Under a general model for the network and node attributes, this work establishes an information-theoretic criterion for the exact recovery of community labels and characterizes a phase transition determined by the Chernoff-Hellinger divergence of the model. The criterion shows how network and attribute information can be exchanged in order to have exact recovery (e.g., more reliable network information requires less reliable attribute information). This work also presents an iterative clustering algorithm that maximizes the joint likelihood, assuming that the probability distribution of network interactions and node attributes belong to exponential families. This covers a broad range of possible interactions (e.g., edges with weights) and attributes (e.g., non-Gaussian models), as well as sparse networks, while also exploring the connection between exponential families and Bregman divergences. Extensive numerical experiments using synthetic data indicate that the proposed algorithm outperforms classic algorithms that leverage only network or only attribute information as well as state-of-the-art algorithms that also leverage both sources of information. The contributions of this work provide insights into the fundamental limits and practical techniques for inferring community labels on node-attributed networks.
Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data
Kai Helli, David Schnurr, Noah Hollmann, Samuel Müller, Frank Hutter
While most ML models expect independent and identically distributed data, this assumption is often violated in real-world scenarios due to distribution shifts, resulting in the degradation of machine learning model performance. Until now, no tabular method has consistently outperformed classical supervised learning, which ignores these shifts. To address temporal distribution shifts, we present Drift-Resilient TabPFN, a fresh approach based on In-Context Learning with a Prior-Data Fitted Network that learns the learning algorithm itself: it accepts the entire training dataset as input and makes predictions on the test set in a single forward pass. Specifically, it learns to approximate Bayesian inference on synthetic datasets drawn from a prior that specifies the model's inductive bias. This prior is based on structural causal models (SCM), which gradually shift over time.
An Artificial Trend Index for Private Consumption Using Google Trends
Tenorio, Juan, Alpiste, Heidi, Remón, Jakelin, Segil, Arian
In recent years, the use of databases that analyze trends, sentiments or news to make economic projections or create indicators has gained significant popularity, particularly with the Google Trends platform. This article explores the potential of Google search data to develop a new index that improves economic forecasts, with a particular focus on one of the key components of economic activity: private consumption (64\% of GDP in Peru). By selecting and estimating categorized variables, machine learning techniques are applied, demonstrating that Google data can identify patterns to generate a leading indicator in real time and improve the accuracy of forecasts. Finally, the results show that Google's "Food" and "Tourism" categories significantly reduce projection errors, highlighting the importance of using this information in a segmented manner to improve macroeconomic forecasts.
Low Precision Local Training is Enough for Federated Learning Binbin Lin
Federated Learning (FL) is a prevalent machine learning paradigm designed to address challenges posed by heterogeneous client data while preserving data privacy. Unlike distributed training, it typically orchestrates resource-constrained edge devices to communicate via a low-bandwidth communication network with a central server. This urges the development of more computation and communication efficient training algorithms. In this paper, we propose an efficient FL paradigm, where the local models in the clients are trained with low-precision operations and communicated with the server in low precision format, while only the model aggregation in the server is performed with high-precision computation. We surprisingly find that high precision models can be recovered from the low precision local models with proper aggregation in the server.
FIFO-Diffusion: Generating Infinite Videos from Text without Training Jihwan Kim 1 Bohyung Han 1,2
We propose a novel inference technique based on a pretrained diffusion model for text-conditional video generation. Our approach, called FIFO-Diffusion, is conceptually capable of generating infinitely long videos without additional training. This is achieved by iteratively performing diagonal denoising, which simultaneously processes a series of consecutive frames with increasing noise levels in a queue; our method dequeues a fully denoised frame at the head while enqueuing a new random noise frame at the tail. However, diagonal denoising is a double-edged sword as the frames near the tail can take advantage of cleaner frames by forward reference but such a strategy induces the discrepancy between training and inference. Hence, we introduce latent partitioning to reduce the training-inference gap and lookahead denoising to leverage the benefit of forward referencing. Practically, FIFO-Diffusion consumes a constant amount of memory regardless of the target video length given a baseline model, while well-suited for parallel inference on multiple GPUs. We have demonstrated the promising results and effectiveness of the proposed methods on existing text-to-video generation baselines.
Perception of Knowledge Boundary for Large Language Models through Semi-open-ended Question Answering
Large Language Models (LLMs) are widely used for knowledge-seeking purposes yet suffer from hallucinations. The knowledge boundary of an LLM limits its factual understanding, beyond which it may begin to hallucinate. Investigating the perception of LLMs' knowledge boundary is crucial for detecting hallucinations and LLMs' reliable generation. Current studies perceive LLMs' knowledge boundary on questions with concrete answers (close-ended questions) while paying limited attention to semi-open-ended questions that correspond to many potential answers. Some researchers achieve it by judging whether the question is answerable or not. However, this paradigm is not so suitable for semi-open-ended questions, which are usually "partially answerable questions" containing both answerable answers and ambiguous (unanswerable) answers.