Plotting

 North America


Comparison between CPBPV, ESC/Java, CBMC, Blast, EUREKA and Why for Bounded Program Verification

arXiv.org Artificial Intelligence

This report describes experimental results for a set of benchmarks on program verification. It compares the capabilities of CPBVP "Constraint Programming framework for Bounded Program Verification" [4] with the following frameworks: ESC/Java, CBMC, Blast, EUREKA and Why.


Verified Null-Move Pruning

arXiv.org Artificial Intelligence

In this article we review standard null-move pruning and introduce our extended version of it, which we call verified null-move pruning. In verified null-move pruning, whenever the shallow null-move search indicates a fail-high, instead of cutting off the search from the current node, the search is continued with reduced depth. Our experiments with verified null-move pruning show that on average, it constructs a smaller search tree with greater tactical strength in comparison to standard null-move pruning. Moreover, unlike standard null-move pruning, which fails badly in zugzwang positions, verified null-move pruning manages to detect most zugzwangs and in such cases conducts a re-search to obtain the correct result. In addition, verified null-move pruning is very easy to implement, and any standard null-move pruning program can use verified null-move pruning by modifying only a few lines of code.


Commonsense Knowledge, Ontology and Ordinary Language

arXiv.org Artificial Intelligence

Over two decades ago a "quite revolution" overwhelmingly replaced knowledgebased approaches in natural language processing (NLP) by quantitative (e.g., statistical, corpus-based, machine learning) methods. Although it is our firm belief that purely quantitative approaches cannot be the only paradigm for NLP, dissatisfaction with purely engineering approaches to the construction of large knowledge bases for NLP are somewhat justified. In this paper we hope to demonstrate that both trends are partly misguided and that the time has come to enrich logical semantics with an ontological structure that reflects our commonsense view of the world and the way we talk about in ordinary language. In this paper it will be demonstrated that assuming such an ontological structure a number of challenges in the semantics of natural language (e.g., metonymy, intensionality, copredication, nominal compounds, etc.) can be properly and uniformly addressed.


Relations among conditional probabilities

arXiv.org Machine Learning

We describe a Groebner basis of relations among conditional probabilities in a discrete probability space, with any set of conditioned-upon events. They may be specialized to the partially-observed random variable case, the purely conditional case, and other special cases. We also investigate the connection to generalized permutohedra and describe a conditional probability simplex.


Text Modeling using Unsupervised Topic Models and Concept Hierarchies

arXiv.org Artificial Intelligence

Statistical topic models provide a general data-driven framework for automated discovery of high-level knowledge from large collections of text documents. While topic models can potentially discover a broad range of themes in a data set, the interpretability of the learned topics is not always ideal. Human-defined concepts, on the other hand, tend to be semantically richer due to careful selection of words to define concepts but they tend not to cover the themes in a data set exhaustively. In this paper, we propose a probabilistic framework to combine a hierarchy of human-defined semantic concepts with statistical topic models to seek the best of both worlds. Experimental results using two different sources of concept hierarchies and two collections of text documents indicate that this combination leads to systematic improvements in the quality of the associated language models as well as enabling new techniques for inferring and visualizing the semantics of a document.


LLE with low-dimensional neighborhood representation

arXiv.org Machine Learning

The local linear embedding algorithm (LLE) is a non-linear dimension-reducing technique, widely used due to its computational simplicity and intuitive approach. LLE first linearly reconstructs each input point from its nearest neighbors and then preserves these neighborhood relations in the low-dimensional embedding. We show that the reconstruction weights computed by LLE capture the high-dimensional structure of the neighborhoods, and not the low-dimensional manifold structure. Consequently, the weight vectors are highly sensitive to noise. Moreover, this causes LLE to converge to a linear projection of the input, as opposed to its non-linear embedding goal. To overcome both of these problems, we propose to compute the weight vectors using a low-dimensional neighborhood representation. We prove theoretically that this straightforward and computationally simple modification of LLE reduces LLE's sensitivity to noise. This modification also removes the need for regularization when the number of neighbors is larger than the dimension of the input. We present numerical examples demonstrating both the perturbation and linear projection problems, and the improved outputs using the low-dimensional neighborhood representation.


I'm sorry to say, but your understanding of image processing fundamentals is absolutely wrong

arXiv.org Artificial Intelligence

The ongoing discussion whether modern vision systems have to be viewed as visually-enabled cognitive systems or cognitively-enabled vision systems is groundless, because perceptual and cognitive faculties of vision are separate components of human (and consequently, artificial) information processing system modeling.


Message-passing for Maximum Weight Independent Set

arXiv.org Artificial Intelligence

We investigate the use of message-passing algorithms for the problem of finding the max-weight independent set (MWIS) in a graph. First, we study the performance of the classical loopy max-product belief propagation. We show that each fixed point estimate of max-product can be mapped in a natural way to an extreme point of the LP polytope associated with the MWIS problem. However, this extreme point may not be the one that maximizes the value of node weights; the particular extreme point at final convergence depends on the initialization of max-product. We then show that if max-product is started from the natural initialization of uninformative messages, it always solves the correct LP -- if it converges. This result is obtained via a direct analysis of the iterative algorithm, and cannot be obtained by looking only at fixed points. The tightness of the LP relaxation is thus necessary for max-product optimality, but it is not sufficient. Motivated by this observation, we show that a simple modification of max-product becomes gradient descent on (a convexified version of) the dual of the LP, and converges to the dual optimum. We also develop a message-passing algorithm that recovers the primal MWIS solution from the output of the descent algorithm. We show that the MWIS estimate obtained using these two algorithms in conjunction is correct when the graph is bipartite and the MWIS is unique. Finally, we show that any problem of MAP estimation for probability distributions over finite domains can be reduced to an MWIS problem. We believe this reduction will yield new insights and algorithms for MAP estimation.


An Image-Based Sensor System for Autonomous Rendez-Vous with Uncooperative Satellites

arXiv.org Artificial Intelligence

In this paper are described the image processing algorithms developed by SENER, Ingenieria y Sistemas to cope with the problem of image-based, autonomous rendez-vous (RV) with an orbiting satellite. The methods developed have a direct application in the OLEV (Orbital Life Extension Extension Vehicle) mission. OLEV is a commercial mission under development by a consortium formed by Swedish Space Corporation, Kayser-Threde and SENER, aimed to extend the operational life of geostationary telecommunication satellites by supplying them control, navigation and guidance services. OLEV is planned to use a set of cameras to determine the angular position and distance to the client satellite during the complete phases of rendez-vous and docking, thus enabling the operation with satellites not equipped with any specific navigational aid to provide support during the approach. The ability to operate with un-equipped client satellites significantly expands the range of applicability of the system under development, compared to other competing video technologies already tested in previous spatial missions, such as the ones described here below.


A new probabilistic transformation of belief mass assignment

arXiv.org Artificial Intelligence

In this paper, we propose in Dezert-Smarandache Theory (DSmT) framework, a new probabilistic transformation, called DSmP, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the DSmP transformation works and we compare it to main existing transformations proposed in the literature so far. We show the advantages of DSmP over classical transformations in term of Probabilistic Information Content (PIC). The direct extension of this transformation for dealing with qualitative belief assignments is also presented.