Plotting

 North America


On the Conditional Independence Implication Problem: A Lattice-Theoretic Approach

arXiv.org Artificial Intelligence

A lattice-theoretic framework is introduced that permits the study of the conditional independence (CI) implication problem relative to the class of discrete probability measures. Semi-lattices are associated with CI statements and a finite, sound and complete inference system relative to semi-lattice inclusions is presented. This system is shown to be (1) sound and complete for saturated CI statements, (2) complete for general CI statements, and (3) sound and complete for stable CI statements. These results yield a criterion that can be used to falsify instances of the implication problem and several heuristics are derived that approximate this "lattice-exclusion" criterion in polynomial time. Finally, we provide experimental results that relate our work to results obtained from other existing inference algorithms.


Gibbs posterior for variable selection in high-dimensional classification and data mining

arXiv.org Machine Learning

In the popular approach of "Bayesian variable selection" (BVS), one uses prior and posterior distributions to select a subset of candidate variables to enter the model. A completely new direction will be considered here to study BVS with a Gibbs posterior originating in statistical mechanics. The Gibbs posterior is constructed from a risk function of practical interest (such as the classification error) and aims at minimizing a risk function without modeling the data probabilistically. This can improve the performance over the usual Bayesian approach, which depends on a probability model which may be misspecified. Conditions will be provided to achieve good risk performance, even in the presence of high dimensionality, when the number of candidate variables "$K$" can be much larger than the sample size "$n$." In addition, we develop a convenient Markov chain Monte Carlo algorithm to implement BVS with the Gibbs posterior.


Choice of neighbor order in nearest-neighbor classification

arXiv.org Machine Learning

The $k$th-nearest neighbor rule is arguably the simplest and most intuitively appealing nonparametric classification procedure. However, application of this method is inhibited by lack of knowledge about its properties, in particular, about the manner in which it is influenced by the value of $k$; and by the absence of techniques for empirical choice of $k$. In the present paper we detail the way in which the value of $k$ determines the misclassification error. We consider two models, Poisson and Binomial, for the training samples. Under the first model, data are recorded in a Poisson stream and are "assigned" to one or other of the two populations in accordance with the prior probabilities. In particular, the total number of data in both training samples is a Poisson-distributed random variable. Under the Binomial model, however, the total number of data in the training samples is fixed, although again each data value is assigned in a random way. Although the values of risk and regret associated with the Poisson and Binomial models are different, they are asymptotically equivalent to first order, and also to the risks associated with kernel-based classifiers that are tailored to the case of two derivatives. These properties motivate new methods for choosing the value of $k$.


Statistical Learning Theory: Models, Concepts, and Results

arXiv.org Machine Learning

Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.


Online Coordinate Boosting

arXiv.org Machine Learning

We present a new online boosting algorithm for adapting the weights of a boosted classifier, which yields a closer approximation to Freund and Schapire's AdaBoost algorithm than previous online boosting algorithms. We also contribute a new way of deriving the online algorithm that ties together previous online boosting work. We assume that the weak hypotheses were selected beforehand, and only their weights are updated during online boosting. The update rule is derived by minimizing AdaBoost's loss when viewed in an incremental form. The equations show that optimization is computationally expensive. However, a fast online approximation is possible. We compare approximation error to batch AdaBoost on synthetic datasets and generalization error on face datasets and the MNIST dataset.


Relationship between Diversity and Perfomance of Multiple Classifiers for Decision Support

arXiv.org Artificial Intelligence

The paper presents the investigation and implementation of the relationship between diversity and the performance of multiple classifiers on classification accuracy. The study is critical as to build classifiers that are strong and can generalize better. The parameters of the neural network within the committee were varied to induce diversity; hence structural diversity is the focus for this study. The hidden nodes and the activation function are the parameters that were varied. The diversity measures that were adopted from ecology such as Shannon and Simpson were used to quantify diversity. Genetic algorithm is used to find the optimal ensemble by using the accuracy as the cost function. The results observed shows that there is a relationship between structural diversity and accuracy. It is observed that the classification accuracy of an ensemble increases as the diversity increases. There was an increase of 3%-6% in the classification accuracy.


The use of entropy to measure structural diversity

arXiv.org Artificial Intelligence

In this paper entropy based methods are compared and used to measure structural diversity of an ensemble of 21 classifiers. This measure is mostly applied in ecology, whereby species counts are used as a measure of diversity. The measures used were Shannon entropy, Simpsons and the Berger Parker diversity indexes. As the diversity indexes increased so did the accuracy of the ensemble. An ensemble dominated by classifiers with the same structure produced poor accuracy. Uncertainty rule from information theory was also used to further define diversity. Genetic algorithms were used to find the optimal ensemble by using the diversity indices as the cost function. The method of voting was used to aggregate the decisions.


Social Learning Methods in Board Games

arXiv.org Artificial Intelligence

This paper discusses the effects of social learning in training of game playing agents. The training of agents in a social context instead of a self-play environment is investigated. Agents that use the reinforcement learning algorithms are trained in social settings. This mimics the way in which players of board games such as scrabble and chess mentor each other in their clubs. A Round Robin tournament and a modified Swiss tournament setting are used for the training. The agents trained using social settings are compared to self play agents and results indicate that more robust agents emerge from the social training setting. Higher state space games can benefit from such settings as diverse set of agents will have multiple strategies that increase the chances of obtaining more experienced players at the end of training. The Social Learning trained agents exhibit better playing experience than self play agents. The modified Swiss playing style spawns a larger number of better playing agents as the population size increases.


The many faces of optimism - Extended version

arXiv.org Artificial Intelligence

The exploration-exploitation dilemma has been an intriguing and unsolved problem within the framework of reinforcement learning. "Optimism in the face of uncertainty" and model building play central roles in advanced exploration methods. Here, we integrate several concepts and obtain a fast and simple algorithm. We show that the proposed algorithm finds a near-optimal policy in polynomial time, and give experimental evidence that it is robust and efficient compared to its ascendants.


Modeling of Social Transitions Using Intelligent Systems

arXiv.org Artificial Intelligence

In this study, we reproduce two new hybrid intelligent systems, involve three prominent intelligent computing and approximate reasoning methods: Self Organizing feature Map (SOM), Neruo-Fuzzy Inference System and Rough Set Theory (RST),called SONFIS and SORST. We show how our algorithms can be construed as a linkage of government-society interactions, where government catches various states of behaviors: solid (absolute) or flexible. So, transition of society, by changing of connectivity parameters (noise) from order to disorder is inferred.