Goto

Collaborating Authors

 United States


A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems

Neural Information Processing Systems

Channel equalization problem is an important problem in high-speed communications. The sequences of symbols transmitted are distorted by neighboring symbols. Traditionally, the channel equalization problem is considered as a channel-inversion operation. One problem of this approach is that there is no direct correspondence between error probability and residual error produced by the channel inversion operation. In this paper, the optimal equalizer design is formulated as a classification problem. The optimal classifier can be constructed by Bayes decision rule. In general it is nonlinear. An efficient hybrid linear/nonlinear equalizer approach has been proposed to train the equalizer. The error probability of new linear/nonlinear equalizer has been shown to be better than a linear equalizer in an experimental channel. 1 INTRODUCTION


Analog VLSI Implementation of Multi-dimensional Gradient Descent

Neural Information Processing Systems

The implementation uses noise injection and multiplicative correlation to estimate derivatives, as in [Anderson, Kerns 92]. One intended application of this technique is setting circuit parameters on-chip automatically, rather than manually [Kirk 91]. Gradient descent optimization may be used to adjust synapse weights for a backpropagation or other on-chip learning implementation. The approach combines the features of continuous multidimensional gradient descent and the potential for an annealing style of optimization. We present data measured from our analog VLSI implementation. 1 Introduction This work is similar to [Anderson, Kerns 92], but represents two advances. First, we describe the extension of the technique to multiple dimensions. Second, we demonstrate an implementation of the multidimensional technique in analog VLSI, and provide results measured from the chip. Unlike previous work using noise sources in adaptive systems, we use the noise as a means of estimating the gradient of a function f(y), rather than performing an annealing process [Alspector 88]. We also estimate gr-;:dients continuously in position and time, in contrast to [Umminger 89] and [J abri 91], which utilize discrete position gradient estimates.


A Note on Learning Vector Quantization

Neural Information Processing Systems

Vector Quantization is useful for data compression. Competitive Learning which minimizes reconstruction error is an appropriate algorithm for vector quantization of unlabelled data. Vector quantization of labelled data for classification has a different objective, to minimize the number of misclassifications, and a different algorithm is appropriate. We show that a variant of Kohonen's LVQ2.1 algorithm can be seen as a multiclass extension of an algorithm which in a restricted 2 class case can be proven to converge to the Bayes optimal classification boundary. We compare the performance of the LVQ2.1 algorithm to that of a modified version having a decreasing window and normalized step size, on a ten class vowel classification problem.


Filter Selection Model for Generating Visual Motion Signals

Neural Information Processing Systems

We present a model of how MT cells aggregate responses from VI to form such a velocity representation. Two different sets of units, with local receptive fields, receive inputs from motion energy filters. One set of units forms estimates of local motion, while the second set computes the utility of these estimates. Outputs from this second set of units "gate" the outputs from the first set through a gain control mechanism. This active process for selecting only a subset of local motion responses to integrate into more global responses distinguishes our model from previous models of velocity estimation.


A Neural Model of Descending Gain Control in the Electrosensory System

Neural Information Processing Systems

Certain species of freshwater tropical fish, known as weakly electric fish, possess an active electric sense that allows them to detect and discriminate objects in their environment using a self-generated electric field (Bullock and Heiligenberg, 1986). They detect objects by sensing small perturbations in this electric field using an array of specialized receptors, known as electroreceptors, that cover their body surface. Weakly electric fish often live in turbid water and tend to be nocturnal. These conditions, which hinder visual perception, do not adversely affect the electric sense. Hence the electrosensory system allows these fish to navigate and capture prey in total darkness in much the same way as the sonar system of echolocating bats allows them to do the same.


A Model of Feedback to the Lateral Geniculate Nucleus

Neural Information Processing Systems

Simplified models of the lateral geniculate nucles (LGN) and striate cortex illustrate the possibility that feedback to the LG N may be used for robust, low-level pattern analysis. The information fed back to the LG N is rebroadcast to cortex using the LG N's full fan-out, so the cortex-LGN-cortex pathway mediates extensive cortico-cortical communication while keeping the number of necessary connections small.


Learning Control Under Extreme Uncertainty

Neural Information Processing Systems

A peg-in-hole insertion task is used as an example to illustrate the utility of direct associative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. Task complexity due to the use of an unchamfered hole and a clearance of less than 0.2mm is compounded by the presence of positional uncertainty of magnitude exceeding 10 to 50 times the clearance. Despite this extreme degree of uncertainty, our results indicate that direct reinforcement learning can be used to learn a robust reactive control strategy that results in skillful peg-in-hole insertions.


A dynamical model of priming and repetition blindness

Neural Information Processing Systems

We describe a model of visual word recognition that accounts for several aspects of the temporal processing of sequences of briefly presented words. The model utilizes a new representation for written words, based on dynamic time warping and multidimensional scaling. The visual input passes through cascaded perceptual, comparison, and detection stages. We describe how these dynamical processes can account for several aspects of word recognition, including repetition priming and repetition blindness.


Neural Network Model Selection Using Asymptotic Jackknife Estimator and Cross-Validation Method

Neural Information Processing Systems

Two theorems and a lemma are presented about the use of jackknife estimator and the cross-validation method for model selection. Theorem 1 gives the asymptotic form for the jackknife estimator. Combined with the model selection criterion, this asymptotic form can be used to obtain the fit of a model. The model selection criterion we used is the negative of the average predictive likehood, the choice of which is based on the idea of the cross-validation method. Lemma 1 provides a formula for further exploration of the asymptotics of the model selection criterion. Theorem 2 gives an asymptotic form of the model selection criterion for the regression case, when the parameters optimization criterion has a penalty term. Theorem 2 also proves the asymptotic equivalence of Moody's model selection criterion (Moody, 1992) and the cross-validation method, when the distance measure between response y and regression function takes the form of a squared difference. 1 INTRODUCTION Selecting a model for a specified problem is the key to generalization based on the training data set.


Global Regularization of Inverse Kinematics for Redundant Manipulators

Neural Information Processing Systems

When m n, we say that the manipulator has redundant degrees--of -freedom (dot). The inverse kinematics problem is the following: given a desired workspace location x, find joint variables 0 such that f(O) x. Even when the forward kinematics is known, 255 256 DeMers and Kreutz-Delgado the inverse kinematics for a manipulator is not generically solvable in closed form (Craig. 1986).