Plotting

 Kansas


The Equivalence of Dynamic and Strategic Stability under Regularized Learning in Games

Neural Information Processing Systems

In this paper, we examine the long-run behavior of regularized, no-regret learning in finite games. A well-known result in the field states that the empirical frequencies of no-regret play converge to the game's set of coarse correlated equilibria; however, our understanding of how the players' actual strategies evolve over time is much more limited - and, in many cases, non-existent. This issue is exacerbated by a series of recent results showing that only strict Nash equilibria are stable and attracting under regularized learning, thus making the relation between learning and pointwise solution concepts particularly elusive. In lieu of this, we take a more general approach and instead seek to characterize the setwise rationality properties of the players' day-to-day play. To that end, we focus on one of the most stringent criteria of setwise strategic stability, namely that any unilateral deviation from the set in question incurs a cost to the deviator - a property known as closedness under better replies (club). In so doing, we obtain a far-reaching equivalence between strategic and dynamic stability: a product of pure strategies is closed under better replies if and only if its span is stable and attracting under regularized learning. In addition, we estimate the rate of convergence to such sets, and we show that methods based on entropic regularization (like the exponential weights algorithm) converge at a geometric rate, while projection-based methods converge within a finite number of iterations, even with bandit, payoff-based feedback.


Fox News AI Newsletter: White House record-keeping revamp

FOX News

This photo posted by DOGE on Feb. 11, 2025, shows shelving and cardboard boxes which DODGE says workers at the underground mine facility use to store federal worker retirement papers. The White House announces that it will implement AI technology to improve efficiency in federal records keeping. HISTORIC EFFICIENCY: Fox News Digital has learned that the U.S. Office of Personnel Management (OPM) will post an updated Privacy Impact Assessment (PIA) at the close of business Wednesday that paves the way for artificial intelligence to improve government efficiency and enhance the federal record-keeping process. NOT IN KANSAS ANYMORE: The use of artifical intelligence to reimagine the classic film "The Wizard of Oz" will likely see mixed reactions from fans, experts told Fox News Digital. BAD-FAITH TACTICS: OpenAI escalated its legal battle with Elon Musk by countersuing the Tesla and xAI CEO, claiming in a lawsuit he "has tried every tool available to harm" the company.


Explainable identification of similarities between entities for discovery in large text

arXiv.org Artificial Intelligence

With the availability of virtually infinite number text documents in digital format, automatic comparison of textual data is essential for extracting meaningful insights that are difficult to identify manually. Many existing tools, including AI and large language models, struggle to provide precise and explainable insights into textual similarities. In many cases they determine the similarity between documents as reflected by the text, rather than the similarities between the subjects being discussed in these documents. This study addresses these limitations by developing an n-gram analysis framework designed to compare documents automatically and uncover explainable similarities. A scoring formula is applied to assigns each of the n-grams with a weight, where the weight is higher when the n-grams are more frequent in both documents, but is penalized when the n-grams are more frequent in the English language. Visualization tools like word clouds enhance the representation of these patterns, providing clearer insights. The findings demonstrate that this framework effectively uncovers similarities between text documents, offering explainable insights that are often difficult to identify manually. This non-parametric approach provides a deterministic solution for identifying similarities across various fields, including biographies, scientific literature, historical texts, and more. Code for the method is publicly available.


Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated transformative potential across various domains, yet they face significant challenges in knowledge integration and complex problem reasoning, often leading to hallucinations and unreliable outputs. Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy by incorporating external knowledge. However, traditional RAG systems struggle with processing complex relational information and multi-step reasoning, limiting their effectiveness in advanced problem-solving tasks. To address these limitations, we propose CogGRAG, a cognition inspired graph-based RAG framework, designed to improve LLMs performance in Knowledge Graph Question Answering (KGQA). Inspired by the human cognitive process of decomposing complex problems and performing self-verification, our framework introduces a three-stage methodology: decomposition, retrieval, and reasoning with self-verification. By integrating these components, CogGRAG enhances the accuracy of LLMs in complex problem solving. We conduct systematic experiments with three LLM backbones on four benchmark datasets, where CogGRAG outperforms the baselines.


MarsLGPR: Mars Rover Localization with Ground Penetrating Radar

arXiv.org Artificial Intelligence

In this work, we propose the use of Ground Penetrating Radar (GPR) for rover localization on Mars. Precise pose estimation is an important task for mobile robots exploring planetary surfaces, as they operate in GPS-denied environments. Although visual odometry provides accurate localization, it is computationally expensive and can fail in dim or high-contrast lighting. Wheel encoders can also provide odometry estimation, but are prone to slipping on the sandy terrain encountered on Mars. Although traditionally a scientific surveying sensor, GPR has been used on Earth for terrain classification and localization through subsurface feature matching. The Perseverance rover and the upcoming ExoMars rover have GPR sensors already equipped to aid in the search of water and mineral resources. We propose to leverage GPR to aid in Mars rover localization. Specifically, we develop a novel GPR-based deep learning model that predicts 1D relative pose translation. We fuse our GPR pose prediction method with inertial and wheel encoder data in a filtering framework to output rover localization. We perform experiments in a Mars analog environment and demonstrate that our GPR-based displacement predictions both outperform wheel encoders and improve multi-modal filtering estimates in high-slip environments. Lastly, we present the first dataset aimed at GPR-based localization in Mars analog environments, which will be made publicly available upon publication.


An Integrated Deep Learning Framework Leveraging NASNet and Vision Transformer with MixProcessing for Accurate and Precise Diagnosis of Lung Diseases

arXiv.org Artificial Intelligence

The lungs are the essential organs of respiration, and this system is significant in the carbon dioxide and exchange between oxygen that occurs in human life. However, several lung diseases, which include pneumonia, tuberculosis, COVID-19, and lung cancer, are serious healthiness challenges and demand early and precise diagnostics. The methodological study has proposed a new deep learning framework called NASNet-ViT, which effectively incorporates the convolution capability of NASNet with the global attention mechanism capability of Vision Transformer ViT. The proposed model will classify the lung conditions into five classes: Lung cancer, COVID-19, pneumonia, TB, and normal. A sophisticated multi-faceted preprocessing strategy called MixProcessing has been used to improve diagnostic accuracy. This preprocessing combines wavelet transform, adaptive histogram equalization, and morphological filtering techniques. The NASNet-ViT model performs at state of the art, achieving an accuracy of 98.9%, sensitivity of 0.99, an F1-score of 0.989, and specificity of 0.987, outperforming other state of the art architectures such as MixNet-LD, D-ResNet, MobileNet, and ResNet50. The model's efficiency is further emphasized by its compact size, 25.6 MB, and a low computational time of 12.4 seconds, hence suitable for real-time, clinically constrained environments. These results reflect the high-quality capability of NASNet-ViT in extracting meaningful features and recognizing various types of lung diseases with very high accuracy. This work contributes to medical image analysis by providing a robust and scalable solution for diagnostics in lung diseases.


Building Knowledge Graphs Towards a Global Food Systems Datahub

arXiv.org Artificial Intelligence

Sustainable agricultural production aligns with several sustainability goals established by the United Nations (UN). However, there is a lack of studies that comprehensively examine sustainable agricultural practices across various products and production methods. Such research could provide valuable insights into the diverse factors influencing the sustainability of specific crops and produce while also identifying practices and conditions that are universally applicable to all forms of agricultural production. While this research might help us better understand sustainability, the community would still need a consistent set of vocabularies. These consistent vocabularies, which represent the underlying datasets, can then be stored in a global food systems datahub. The standardized vocabularies might help encode important information for further statistical analyses and AI/ML approaches in the datasets, resulting in the research targeting sustainable agricultural production. A structured method of representing information in sustainability, especially for wheat production, is currently unavailable. In an attempt to address this gap, we are building a set of ontologies and Knowledge Graphs (KGs) that encode knowledge associated with sustainable wheat production using formal logic. The data for this set of knowledge graphs are collected from public data sources, experimental results collected at our experiments at Kansas State University, and a Sustainability Workshop that we organized earlier in the year, which helped us collect input from different stakeholders throughout the value chain of wheat. The modeling of the ontology (i.e., the schema) for the Knowledge Graph has been in progress with the help of our domain experts, following a modular structure using KNARM methodology. In this paper, we will present our preliminary results and schemas of our Knowledge Graph and ontologies.


A Review of Artificial Intelligence Impacting Statistical Process Monitoring and Future Directions

arXiv.org Artificial Intelligence

It has been 100 years since statistical process control (SPC) or statistical process monitoring (SPM) was first introduced for production processes and later applied to service, healthcare, and other industries. The techniques applied to SPM applications are mostly statistically oriented. Recent advances in Artificial Intelligence (AI) have reinvigorated the imagination of adopting AI for SPM applications. This manuscript begins with a concise review of the historical development of the statistically based SPM methods. Next, this manuscript explores AI and Machine Learning (ML) algorithms and methods applied in various SPM applications, addressing quality characteristics of univariate, multivariate, profile, and image. These AI methods can be classified into the following categories: classification, pattern recognition, time series applications, and generative AI. Specifically, different kinds of neural networks, such as artificial neural networks (ANN), convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial networks (GAN), are among the most implemented AI methods impacting SPM. Finally, this manuscript outlines a couple of future directions that harness the potential of the Large Multimodal Model (LMM) for advancing SPM research and applications in complex systems. The ultimate objective is to transform statistical process monitoring (SPM) into smart process control (SMPC), where corrective actions are autonomously implemented to either prevent quality issues or restore process performance.


Do Large Multimodal Models Solve Caption Generation for Scientific Figures? Lessons Learned from SciCap Challenge 2023

arXiv.org Artificial Intelligence

Since the SciCap datasets launch in 2021, the research community has made significant progress in generating captions for scientific figures in scholarly articles. In 2023, the first SciCap Challenge took place, inviting global teams to use an expanded SciCap dataset to develop models for captioning diverse figure types across various academic fields. At the same time, text generation models advanced quickly, with many powerful pre-trained large multimodal models (LMMs) emerging that showed impressive capabilities in various vision-and-language tasks. This paper presents an overview of the first SciCap Challenge and details the performance of various models on its data, capturing a snapshot of the fields state. We found that professional editors overwhelmingly preferred figure captions generated by GPT-4V over those from all other models and even the original captions written by authors. Following this key finding, we conducted detailed analyses to answer this question: Have advanced LMMs solved the task of generating captions for scientific figures?


How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training

arXiv.org Artificial Intelligence

Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.