Asia


Diff-eRank: A Novel Rank-Based Metric for Evaluating Large Language Models

Neural Information Processing Systems

Large Language Models (LLMs) have transformed natural language processing and extended their powerful capabilities to multi-modal domains. As LLMs continue to advance, it is crucial to develop diverse and appropriate metrics for their evaluation. In this paper, we introduce a novel rank-based metric, Diff-eRank, grounded in information theory and geometry principles. Diff-eRank assesses LLMs by analyzing their hidden representations, providing a quantitative measure of how efficiently they eliminate redundant information during training. We demonstrate the applicability of Diff-eRank in both single-modal (e.g., language) and multimodal settings. For language models, our results show that Diff-eRank increases with model size and correlates well with conventional metrics such as loss and accuracy. In the multi-modal context, we propose an alignment evaluation method based on the eRank, and verify that contemporary multi-modal LLMs exhibit strong alignment performance based on our method.


On the Power of Small-size Graph Neural Networks for Linear Programming

Neural Information Processing Systems

Graph neural networks (GNNs) have recently emerged as powerful tools for addressing complex optimization problems. It has been theoretically demonstrated that GNNs can universally approximate the solution mapping functions of linear programming (LP) problems. However, these theoretical results typically require GNNs to have large parameter sizes. Conversely, empirical experiments have shown that relatively small GNNs can solve LPs effectively, revealing a significant discrepancy between theoretical predictions and practical observations. In this work, we aim to bridge this gap by providing a theoretical foundation for the effectiveness of smaller GNNs. We prove that polylogarithmic-depth, constant-width GNNs are sufficient to solve packing and covering LPs, two widely used classes of LPs. Our proof leverages the capability of GNNs to simulate a variant of the gradient descent algorithm on a carefully selected potential function. Additionally, we introduce a new GNN architecture, termed GD-Net. Experimental results demonstrate that GD-Net significantly outperforms conventional GNN structures while using fewer parameters.


Implicit Bias of Gradient Descent on Linear Convolutional Networks

Neural Information Processing Systems

Large scale neural networks used in practice are highly over-parameterized with far more trainable model parameters compared to the number of training examples. Consequently, optimization objectives for learning such high capacity models have many global minima that fit training data perfectly. However, minimizing the training loss using specific optimization algorithms take us to not just any global minima, but some special global minima, e.g., global minima minimizing some regularizer R(ฮฒ). In over-parameterized models, specially deep neural networks, much, if not most, of the inductive bias of the learned model comes from this implicit regularization from the optimization algorithm. Understanding the implicit bias, e.g., via characterizing R(ฮฒ), is thus essential for understanding how and what the model learns.


under the water A global multi-temporal satellite dataset for rapid flood mapping Maria Sdraka

Neural Information Processing Systems

Global flash floods, exacerbated by climate change, pose severe threats to human life, infrastructure, and the environment. Recent catastrophic events in Pakistan and New Zealand underscore the urgent need for precise flood mapping to guide restoration efforts, understand vulnerabilities, and prepare for future occurrences. While Synthetic Aperture Radar (SAR) remote sensing offers day-and-night, all-weather imaging capabilities, its application in deep learning for flood segmentation is limited by the lack of large annotated datasets. To address this, we introduce Kuro Siwo, a manually annotated multi-temporal dataset, spanning 43 flood events globally.


Most AI chatbots devour your user data - these are the worst offenders

ZDNet

Like many people today, you may turn to AI to answer questions, generate content, and gather information. But as they say, there's always a price to pay. In the case of AI, that means user data. In a new report, VPN and security service Surfshark analyzed what types of data various AIs collect from you and which ones scoop up the greatest amount. For its report, Surfshark looked at 10 popular AI chatbots -- ChatGPT, Claude AI, DeepSeek, Google Gemini, Grok, Jasper, Meta AI, Microsoft Copilot, Perplexity, Pi, and Poe.


Weak-shot Semantic Segmentation via Dual Similarity Transfer

Neural Information Processing Systems

Semantic segmentation is an important and prevalent task, but severely suffers from the high cost of pixel-level annotations when extending to more classes in wider applications. To this end, we focus on the problem named weak-shot semantic segmentation, where the novel classes are learnt from cheaper image-level labels with the support of base classes having off-the-shelf pixel-level labels. To tackle this problem, we propose SimFormer, which performs dual similarity transfer upon MaskFormer.


Let Images Give You More: Point Cloud Cross-Modal Training for Shape Analysis

Neural Information Processing Systems

Although recent point cloud analysis achieves impressive progress, the paradigm of representation learning from a single modality gradually meets its bottleneck. In this work, we take a step towards more discriminative 3D point cloud representation by fully taking advantages of images which inherently contain richer appearance information, e.g., texture, color, and shade. Specifically, this paper introduces a simple but effective point cloud cross-modality training (PointCMT) strategy, which utilizes view-images, i.e., rendered or projected 2D images of the 3D object, to boost point cloud analysis. In practice, to effectively acquire auxiliary knowledge from view images, we develop a teacher-student framework and formulate the crossmodal learning as a knowledge distillation problem. PointCMT eliminates the distribution discrepancy between different modalities through novel feature and classifier enhancement criteria and avoids potential negative transfer effectively. Note that PointCMT effectively improves the point-only representation without architecture modification. Sufficient experiments verify significant gains on various datasets using appealing backbones, i.e., equipped with PointCMT, PointNet++ and PointMLP achieve state-of-the-art performance on two benchmarks, i.e., 94.4% and 86.7% accuracy on ModelNet40 and ScanObjectNN, respectively. Code will be made available at https://github.com/ZhanHeshen/PointCMT.


Robots square off in world's first humanoid boxing match

Popular Science

Breakthroughs, discoveries, and DIY tips sent every weekday. After decades of being tortured, shoved, kicked, burned, and bludgeoned, robots are finally getting their chance to fight back. This weekend, Chinese robotics maker Unitree says it will livestream the world's first boxing match between two of its humanoid robots. The event, titled Unitree Iron Fist King: Awakening, will feature a face-off between two of Unitree's 4.3-foot-tall G1 robots. The robots will reportedly be remotely controlled by human engineers, though they are also expected to demonstrate some autonomous, pre-programmed actions as well.


TANGO: Text-driven Photorealistic and Robust 3D Stylization via Lighting Decomposition

Neural Information Processing Systems

Creation of 3D content by stylization is a promising yet challenging problem in computer vision and graphics research. In this work, we focus on stylizing photorealistic appearance renderings of a given surface mesh of arbitrary topology. Motivated by the recent surge of cross-modal supervision of the Contrastive Language-Image Pre-training (CLIP) model, we propose TANGO, which transfers the appearance style of a given 3D shape according to a text prompt in a photorealistic manner. Technically, we propose to disentangle the appearance style as the spatially varying bidirectional reflectance distribution function, the local geometric variation, and the lighting condition, which are jointly optimized, via supervision of the CLIP loss, by a spherical Gaussians based differentiable renderer. As such, TANGO enables photorealistic 3D style transfer by automatically predicting reflectance effects even for bare, low-quality meshes, without training on a task-specific dataset. Extensive experiments show that TANGO outperforms existing methods of text-driven 3D style transfer in terms of photorealistic quality, consistency of 3D geometry, and robustness when stylizing low-quality meshes. Our codes and results are available at our project webpage https://cyw-3d.github.io/tango.


Localize, Understand, Collaborate: Semantic-Aware Dragging via Intention Reasoner

Neural Information Processing Systems

Flexible and accurate drag-based editing is a challenging task that has recently garnered significant attention. Current methods typically model this problem as automatically learning "how to drag" through point dragging and often produce one deterministic estimation, which presents two key limitations: 1) Overlooking the inherently ill-posed nature of drag-based editing, where multiple results may correspond to a given input, as illustrated in Figure 1; 2) Ignoring the constraint of image quality, which may lead to unexpected distortion. To alleviate this, we propose LucidDrag, which shifts the focus from "how to drag" to "what-then-how" paradigm. LucidDrag comprises an intention reasoner and a collaborative guidance sampling mechanism. The former infers several optimal editing strategies, identifying what content and what semantic direction to be edited. Based on the former, the latter addresses "how to drag" by collaboratively integrating existing editing guidance with the newly proposed semantic guidance and quality guidance. Specifically, semantic guidance is derived by establishing a semantic editing direction based on reasoned intentions, while quality guidance is achieved through classifier guidance using an image fidelity discriminator. Both qualitative and quantitative comparisons demonstrate the superiority of LucidDrag over previous methods.