Not enough data to create a plot.
Try a different view from the menu above.
arXiv.org Machine Learning
Classification by Set Cover: The Prototype Vector Machine
Bien, Jacob, Tibshirani, Robert
We introduce a new nearest-prototype classifier, the prototype vector machine (PVM). It arises from a combinatorial optimization problem which we cast as a variant of the set cover problem. We propose two algorithms for approximating its solution. The PVM selects a relatively small number of representative points which can then be used for classification. It contains 1-NN as a special case. The method is compatible with any dissimilarity measure, making it amenable to situations in which the data are not embedded in an underlying feature space or in which using a non-Euclidean metric is desirable. Indeed, we demonstrate on the much studied ZIP code data how the PVM can reap the benefits of a problem-specific metric. In this example, the PVM outperforms the highly successful 1-NN with tangent distance, and does so retaining fewer than half of the data points. This example highlights the strengths of the PVM in yielding a low-error, highly interpretable model. Additionally, we apply the PVM to a protein classification problem in which a kernel-based distance is used.
Statistical ranking and combinatorial Hodge theory
Jiang, Xiaoye, Lim, Lek-Heng, Yao, Yuan, Ye, Yinyu
We propose a number of techniques for obtaining a global ranking from data that may be incomplete and imbalanced -- characteristics almost universal to modern datasets coming from e-commerce and internet applications. We are primarily interested in score or rating-based cardinal data. From raw ranking data, we construct pairwise rankings, represented as edge flows on an appropriate graph. Our statistical ranking method uses the graph Helmholtzian, the graph theoretic analogue of the Helmholtz operator or vector Laplacian, in much the same way the graph Laplacian is an analogue of the Laplace operator or scalar Laplacian. We study the graph Helmholtzian using combinatorial Hodge theory: we show that every edge flow representing pairwise ranking can be resolved into two orthogonal components, a gradient flow that represents the L2-optimal global ranking and a divergence-free flow (cyclic) that measures the validity of the global ranking obtained -- if this is large, then the data does not have a meaningful global ranking. This divergence-free flow can be further decomposed orthogonally into a curl flow (locally cyclic) and a harmonic flow (locally acyclic but globally cyclic); these provides information on whether inconsistency arises locally or globally. An obvious advantage over the NP-hard Kemeny optimization is that discrete Hodge decomposition may be computed via a linear least squares regression. We also investigated the L1-projection of edge flows, showing that this is dual to correlation maximization over bounded divergence-free flows, and the L1-approximate sparse cyclic ranking, showing that this is dual to correlation maximization over bounded curl-free flows. We discuss relations with Kemeny optimization, Borda count, and Kendall-Smith consistency index from social choice theory and statistics.
Discrete Temporal Models of Social Networks
Hanneke, Steve, Fu, Wenjie, Xing, Eric
We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of this type and their properties, and give examples, as well as a demonstration of their use for hypothesis testing and classification. We believe our temporal ERG models represent a useful new framework for modeling time-evolving social networks, and rewiring networks from other domains such as gene regulation circuitry, and communication networks.
Streamed Learning: One-Pass SVMs
Rai, Piyush, Daumé, Hal III, Venkatasubramanian, Suresh
We present a streaming model for large-scale classification (in the context of $\ell_2$-SVM) by leveraging connections between learning and computational geometry. The streaming model imposes the constraint that only a single pass over the data is allowed. The $\ell_2$-SVM is known to have an equivalent formulation in terms of the minimum enclosing ball (MEB) problem, and an efficient algorithm based on the idea of \emph{core sets} exists (Core Vector Machine, CVM). CVM learns a $(1+\varepsilon)$-approximate MEB for a set of points and yields an approximate solution to corresponding SVM instance. However CVM works in batch mode requiring multiple passes over the data. This paper presents a single-pass SVM which is based on the minimum enclosing ball of streaming data. We show that the MEB updates for the streaming case can be easily adapted to learn the SVM weight vector in a way similar to using online stochastic gradient updates. Our algorithm performs polylogarithmic computation at each example, and requires very small and constant storage. Experimental results show that, even in such restrictive settings, we can learn efficiently in just one pass and get accuracies comparable to other state-of-the-art SVM solvers (batch and online). We also give an analysis of the algorithm, and discuss some open issues and possible extensions.
The Infinite Hierarchical Factor Regression Model
We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis.
How the initialization affects the stability of the k-means algorithm
Bubeck, Sebastien, Meila, Marina, von Luxburg, Ulrike
We investigate the role of the initialization for the stability of the k-means clustering algorithm. As opposed to other papers, we consider the actual k-means algorithm and do not ignore its property of getting stuck in local optima. We are interested in the actual clustering, not only in the costs of the solution. We analyze when different initializations lead to the same local optimum, and when they lead to different local optima. This enables us to prove that it is reasonable to select the number of clusters based on stability scores.
PDE-Foam - a probability-density estimation method using self-adapting phase-space binning
Dannheim, Dominik, Carli, Tancredi, Grahn, Karl-Johan, Speckmayer, Peter, Voigt, Alexander
Probability Density Estimation (PDE) is a multivariate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. In this paper, we present a modification of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multi-dimensional phase space, minimising the variance of the signal and background densities inside the cells. The implementation of the binning algorithm PDE-Foam is based on the MC event-generation package Foam. We present performance results for representative examples (toy models) and discuss the dependence of the obtained results on the choice of parameters. The new PDE-Foam shows improved classification capability for small training samples and reduced classification time compared to the original PDE method based on range searching.
Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
Hausser, Jean, Strimmer, Korbinian
We present a procedure for effective estimation of entropy and mutual information from small-sample data, and apply it to the problem of inferring high-dimensional gene association networks. Specifically, we develop a James-Stein-type shrinkage estimator, resulting in a procedure that is highly efficient statistically as well as computationally. Despite its simplicity, we show that it outperforms eight other entropy estimation procedures across a diverse range of sampling scenarios and data-generating models, even in cases of severe undersampling. We illustrate the approach by analyzing E. coli gene expression data and computing an entropy-based gene-association network from gene expression data. A computer program is available that implements the proposed shrinkage estimator.
Empirical Bernstein Bounds and Sample Variance Penalization
Maurer, Andreas, Pontil, Massimiliano
We give improved constants for data dependent and variance sensitive confidence bounds, called empirical Bernstein bounds, and extend these inequalities to hold uniformly over classes of functionswhose growth function is polynomial in the sample size n. The bounds lead us to consider sample variance penalization, a novel learning method which takes into account the empirical variance of the loss function. We give conditions under which sample variance penalization is effective. In particular, we present a bound on the excess risk incurred by the method. Using this, we argue that there are situations in which the excess risk of our method is of order 1/n, while the excess risk of empirical risk minimization is of order 1/sqrt/{n}. We show some experimental results, which confirm the theory. Finally, we discuss the potential application of our results to sample compression schemes.
Inter Genre Similarity Modelling For Automatic Music Genre Classification
Music genre classification is an essential tool for music information retrieval systems and it has been finding critical applications in various media platforms. Two important problems of the automatic music genre classification are feature extraction and classifier design. This paper investigates inter-genre similarity modelling (IGS) to improve the performance of automatic music genre classification. Inter-genre similarity information is extracted over the mis-classified feature population. Once the inter-genre similarity is modelled, elimination of the inter-genre similarity reduces the inter-genre confusion and improves the identification rates. Inter-genre similarity modelling is further improved with iterative IGS modelling(IIGS) and score modelling for IGS elimination(SMIGS). Experimental results with promising classification improvements are provided.