Not enough data to create a plot.
Try a different view from the menu above.
arXiv.org Machine Learning
Sparse Additive Contextual Bandits: A Nonparametric Approach for Online Decision-making with High-dimensional Covariates
Wang, Wenjia, Zhang, Qingwen, Zhang, Xiaowei
Personalized services are central to today's digital landscape, where online decision-making is commonly formulated as contextual bandit problems. Two key challenges emerge in modern applications: high-dimensional covariates and the need for nonparametric models to capture complex reward-covariate relationships. We address these challenges by developing a contextual bandit algorithm based on sparse additive reward models in reproducing kernel Hilbert spaces. We establish statistical properties of the doubly penalized method applied to random regions, introducing novel analyses under bandit feedback. Our algorithm achieves sublinear cumulative regret over the time horizon $T$ while scaling logarithmically with covariate dimensionality $d$. Notably, we provide the first regret upper bound with logarithmic growth in $d$ for nonparametric contextual bandits with high-dimensional covariates. We also establish a lower bound, with the gap to the upper bound vanishing as smoothness increases. Extensive numerical experiments demonstrate our algorithm's superior performance in high-dimensional settings compared to existing approaches.
A Statistical Theory of Contrastive Learning via Approximate Sufficient Statistics
Contrastive learning -- a modern approach to extract useful representations from unlabeled data by training models to distinguish similar samples from dissimilar ones -- has driven significant progress in foundation models. In this work, we develop a new theoretical framework for analyzing data augmentation-based contrastive learning, with a focus on SimCLR as a representative example. Our approach is based on the concept of \emph{approximate sufficient statistics}, which we extend beyond its original definition in \cite{oko2025statistical} for contrastive language-image pretraining (CLIP) using KL-divergence. We generalize it to equivalent forms and general f-divergences, and show that minimizing SimCLR and other contrastive losses yields encoders that are approximately sufficient. Furthermore, we demonstrate that these near-sufficient encoders can be effectively adapted to downstream regression and classification tasks, with performance depending on their sufficiency and the error induced by data augmentation in contrastive learning. Concrete examples in linear regression and topic classification are provided to illustrate the broad applicability of our results.
Bayesian generative models can flag performance loss, bias, and out-of-distribution image content
Lรณpez-Pรฉrez, Miguel, Miani, Marco, Naranjo, Valery, Hauberg, Sรธren, Feragen, Aasa
Generative models are popular for medical imaging tasks such as anomaly detection, feature extraction, data visualization, or image generation. Since they are parameterized by deep learning models, they are often sensitive to distribution shifts and unreliable when applied to out-of-distribution data, creating a risk of, e.g. underrepresentation bias. This behavior can be flagged using uncertainty quantification methods for generative models, but their availability remains limited. We propose SLUG: A new UQ method for VAEs that combines recent advances in Laplace approximations with stochastic trace estimators to scale gracefully with image dimensionality. We show that our UQ score -- unlike the VAE's encoder variances -- correlates strongly with reconstruction error and racial underrepresentation bias for dermatological images. We also show how pixel-wise uncertainty can detect out-of-distribution image content such as ink, rulers, and patches, which is known to induce learning shortcuts in predictive models.
Capturing Individual Human Preferences with Reward Features
Barreto, Andrรฉ, Dumoulin, Vincent, Mao, Yiran, Perez-Nieves, Nicolas, Shahriari, Bobak, Dauphin, Yann, Precup, Doina, Larochelle, Hugo
Reinforcement learning from human feedback usually models preferences using a reward model that does not distinguish between people. We argue that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We propose a method to specialise a reward model to a person or group of people. Our approach builds on the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models comparing the proposed architecture with a non-adaptive reward model and also adaptive counterparts, including models that do in-context personalisation. Depending on how much disagreement there is in the training data, our model either significantly outperforms the baselines or matches their performance with a simpler architecture and more stable training.
Calibration Strategies for Robust Causal Estimation: Theoretical and Empirical Insights on Propensity Score Based Estimators
Rabenseifner, Jan, Klaassen, Sven, Kueck, Jannis, Bach, Philipp
The partitioning of data for estimation and calibration critically impacts the performance of propensity score based estimators like inverse probability weighting (IPW) and double/debiased machine learning (DML) frameworks. We extend recent advances in calibration techniques for propensity score estimation, improving the robustness of propensity scores in challenging settings such as limited overlap, small sample sizes, or unbalanced data. Our contributions are twofold: First, we provide a theoretical analysis of the properties of calibrated estimators in the context of DML. To this end, we refine existing calibration frameworks for propensity score models, with a particular emphasis on the role of sample-splitting schemes in ensuring valid causal inference. Second, through extensive simulations, we show that calibration reduces variance of inverse-based propensity score estimators while also mitigating bias in IPW, even in small-sample regimes. Notably, calibration improves stability for flexible learners (e.g., gradient boosting) while preserving the doubly robust properties of DML. A key insight is that, even when methods perform well without calibration, incorporating a calibration step does not degrade performance, provided that an appropriate sample-splitting approach is chosen.
TAET: Two-Stage Adversarial Equalization Training on Long-Tailed Distributions
YuHang, Wang, Guo, Junkang, Liu, Aolei, Wang, Kaihao, Wu, Zaitong, Liu, Zhenyu, Yin, Wenfei, Liu, Jian
Adversarial robustness is a critical challenge in deploying deep neural networks for real-world applications. While adversarial training is a widely recognized defense strategy, most existing studies focus on balanced datasets, overlooking the prevalence of long-tailed distributions in real-world data, which significantly complicates robustness. This paper provides a comprehensive analysis of adversarial training under long-tailed distributions and identifies limitations in the current state-of-the-art method, AT-BSL, in achieving robust performance under such conditions. To address these challenges, we propose a novel training framework, TAET, which integrates an initial stabilization phase followed by a stratified equalization adversarial training phase. Additionally, prior work on long-tailed robustness has largely ignored the crucial evaluation metric of balanced accuracy. To bridge this gap, we introduce the concept of balanced robustness, a comprehensive metric tailored for assessing robustness under long-tailed distributions. Extensive experiments demonstrate that our method surpasses existing advanced defenses, achieving significant improvements in both memory and computational efficiency. This work represents a substantial advancement in addressing robustness challenges in real-world applications. Our code is available at: https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions.
Integrated Subset Selection and Bandwidth Estimation Algorithm for Geographically Weighted Regression
Lee, Hyunwoo, Park, Young Woong
This study proposes a mathematical programming-based algorithm for the integrated selection of variable subsets and bandwidth estimation in geographically weighted regression, a local regression method that allows the kernel bandwidth and regression coefficients to vary across study areas. Unlike standard approaches in the literature, in which bandwidth and regression parameters are estimated separately for each focal point on the basis of different criteria, our model uses a single objective function for the integrated estimation of regression and bandwidth parameters across all focal points, based on the regression likelihood function and variance modeling. The proposed model further integrates a procedure to select a single subset of independent variables for all focal points, whereas existing approaches may return heterogeneous subsets across focal points. We then propose an alternative direction method to solve the nonconvex mathematical model and show that it converges to a partial minimum. The computational experiment indicates that the proposed algorithm provides competitive explanatory power with stable spatially varying patterns, with the ability to select the best subset and account for additional constraints.
A Thorough Assessment of the Non-IID Data Impact in Federated Learning
Jimenez-Gutierrez, Daniel M., Hassanzadeh, Mehrdad, Anagnostopoulos, Aris, Chatzigiannakis, Ioannis, Vitaletti, Andrea
Federated learning (FL) allows collaborative machine learning (ML) model training among decentralized clients' information, ensuring data privacy. The decentralized nature of FL deals with non-independent and identically distributed (non-IID) data. This open problem has notable consequences, such as decreased model performance and more significant convergence times. Despite its importance, experimental studies systematically addressing all types of data heterogeneity (a.k.a. non-IIDness) remain scarce. We aim to fill this gap by assessing and quantifying the non-IID effect through a thorough empirical analysis. We use the Hellinger Distance (HD) to measure differences in distribution among clients. Our study benchmarks four state-of-the-art strategies for handling non-IID data, including label, feature, quantity, and spatiotemporal skewness, under realistic and controlled conditions. This is the first comprehensive analysis of the spatiotemporal skew effect in FL. Our findings highlight the significant impact of label and spatiotemporal skew non-IID types on FL model performance, with notable performance drops occurring at specific HD thresholds. Additionally, the FL performance is heavily affected mainly when the non-IIDness is extreme. Thus, we provide recommendations for FL research to tackle data heterogeneity effectively. Our work represents the most extensive examination of non-IIDness in FL, offering a robust foundation for future research.
ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market
Bezold, Vincent, Baur, Lukas, Sauer, Alexander
The increasing integration of renewable energy sources has led to greater volatility and unpredictability in electricity generation, posing challenges to grid stability. Ancillary service markets, such as the German control reserve market, allow industrial consumers and producers to offer flexibility in their power consumption or generation, contributing to grid stability while earning additional income. However, many participants use simple bidding strategies that may not maximize their revenues. This paper presents a methodology for forecasting bidding prices in pay-as-bid ancillary service markets, focusing on the German control reserve market. We evaluate various machine learning models, including Support Vector Regression, Decision Trees, and k-Nearest Neighbors, and compare their performance against benchmark models. To address the asymmetry in the revenue function of pay-as-bid markets, we introduce an offset adjustment technique that enhances the practical applicability of the forecasting models. Our analysis demonstrates that the proposed approach improves potential revenues by 27.43 % to 37.31 % compared to baseline models. When analyzing the relationship between the model forecasting errors and the revenue, a negative correlation is measured for three markets; according to the results, a reduction of 1 EUR/MW model price forecasting error (MAE) statistically leads to a yearly revenue increase between 483 EUR/MW and 3,631 EUR/MW. The proposed methodology enables industrial participants to optimize their bidding strategies, leading to increased earnings and contributing to the efficiency and stability of the electrical grid.
SNPL: Simultaneous Policy Learning and Evaluation for Safe Multi-Objective Policy Improvement
Cho, Brian, Pop, Ana-Roxana, Evnine, Ariel, Kallus, Nathan
To design effective digital interventions, experimenters face the challenge of learning decision policies that balance multiple objectives using offline data. Often, they aim to develop policies that maximize goal outcomes, while ensuring there are no undesirable changes in guardrail outcomes. To provide credible recommendations, experimenters must not only identify policies that satisfy the desired changes in goal and guardrail outcomes, but also offer probabilistic guarantees about the changes these policies induce. In practice, however, policy classes are often large, and digital experiments tend to produce datasets with small effect sizes relative to noise. In this setting, standard approaches such as data splitting or multiple testing often result in unstable policy selection and/or insufficient statistical power. In this paper, we provide safe noisy policy learning (SNPL), a novel approach that leverages the concept of algorithmic stability to address these challenges. Our method enables policy learning while simultaneously providing high-confidence guarantees using the entire dataset, avoiding the need for data-splitting. We present finite-sample and asymptotic versions of our algorithm that ensure the recommended policy satisfies high-probability guarantees for avoiding guardrail regressions and/or achieving goal outcome improvements. We test both variants of our approach approach empirically on a real-world application of personalizing SMS delivery. Our results on real-world data suggest that our approach offers dramatic improvements in settings with large policy classes and low signal-to-noise across both finite-sample and asymptotic safety guarantees, offering up to 300\% improvements in detection rates and 150\% improvements in policy gains at significantly smaller sample sizes.