arXiv.org Artificial Intelligence
Reducing Smoothness with Expressive Memory Enhanced Hierarchical Graph Neural Networks
Bailie, Thomas, Koh, Yun Sing, Mukkavilli, S. Karthik, Vetrova, Varvara
Graphical forecasting models learn the structure of time series data via projecting onto a graph, with recent techniques capturing spatial-temporal associations between variables via edge weights. Hierarchical variants offer a distinct advantage by analysing the time series across multiple resolutions, making them particularly effective in tasks like global weather forecasting, where low-resolution variable interactions are significant. A critical challenge in hierarchical models is information loss during forward or backward passes through the hierarchy. We propose the Hierarchical Graph Flow (HiGFlow) network, which introduces a memory buffer variable of dynamic size to store previously seen information across variable resolutions. We theoretically show two key results: HiGFlow reduces smoothness when mapping onto new feature spaces in the hierarchy and non-strictly enhances the utility of message-passing by improving Weisfeiler-Lehman (WL) expressivity. Empirical results demonstrate that HiGFlow outperforms state-of-the-art baselines, including transformer models, by at least an average of 6.1% in MAE and 6.2% in RMSE. Code is available at https://github.com/TB862/ HiGFlow.git.
Machine Learning-assisted High-speed Combinatorial Optimization with Ising Machines for Dynamically Changing Problems
Hamakawa, Yohei, Kashimata, Tomoya, Yamasaki, Masaya, Tatsumura, Kosuke
Quantum or quantum-inspired Ising machines have recently shown promise in solving combinatorial optimization problems in a short time. Real-world applications, such as time division multiple access (TDMA) scheduling for wireless multi-hop networks and financial trading, require solving those problems sequentially where the size and characteristics change dynamically. However, using Ising machines involves challenges to shorten system-wide latency due to the transfer of large Ising model or the cloud access and to determine the parameters for each problem. Here we show a combinatorial optimization method using embedded Ising machines, which enables solving diverse problems at high speed without runtime parameter tuning. We customize the algorithm and circuit architecture of the simulated bifurcation-based Ising machine to compress the Ising model and accelerate computation and then built a machine learning model to estimate appropriate parameters using extensive training data. In TDMA scheduling for wireless multi-hop networks, our demonstration has shown that the sophisticated system can adapt to changes in the problem and showed that it has a speed advantage over conventional methods.
Sustainable broadcasting in Blockchain Networks with Reinforcement Learning
Valko, Danila, Kudenko, Daniel
Recent estimates put the carbon footprint of Bitcoin and Ethereum at an average of 64 and 26 million tonnes of CO2 per year, respectively. To address this growing problem, several possible approaches have been proposed in the literature: creating alternative blockchain consensus mechanisms, applying redundancy reduction techniques, utilizing renewable energy sources, and employing energy-efficient devices, etc. In this paper, we follow the second avenue and propose an efficient approach based on reinforcement learning that improves the block broadcasting scheme in blockchain networks. The analysis and experimental results confirmed that the proposed improvement of the block propagation scheme could cleverly handle network dynamics and achieve better results than the default approach. Additionally, our technical integration of the simulator and developed RL environment can be used as a complete solution for further study of new schemes and protocols that use RL or other ML techniques.
CrossFormer: Cross-Segment Semantic Fusion for Document Segmentation
Ni, Tongke, Fan, Yang, Zhou, Junru, Wu, Xiangping, Chen, Qingcai
Text semantic segmentation involves partitioning a document into multiple paragraphs with continuous semantics based on the subject matter, contextual information, and document structure. Traditional approaches have typically relied on preprocessing documents into segments to address input length constraints, resulting in the loss of critical semantic information across segments. To address this, we present CrossFormer, a transformer-based model featuring a novel cross-segment fusion module that dynamically models latent semantic dependencies across document segments, substantially elevating segmentation accuracy. Additionally, CrossFormer can replace rule-based chunk methods within the Retrieval-Augmented Generation (RAG) system, producing more semantically coherent chunks that enhance its efficacy. Comprehensive evaluations confirm CrossFormer's state-of-the-art performance on public text semantic segmentation datasets, alongside considerable gains on RAG benchmarks.
PolypSegTrack: Unified Foundation Model for Colonoscopy Video Analysis
Choudhuri, Anwesa, Gao, Zhongpai, Zheng, Meng, Planche, Benjamin, Chen, Terrence, Wu, Ziyan
Early detection, accurate segmentation, classification and tracking of polyps during colonoscopy are critical for preventing colorectal cancer. Many existing deep-learning-based methods for analyzing colonoscopic videos either require task-specific fine-tuning, lack tracking capabilities, or rely on domain-specific pre-training. In this paper, we introduce PolypSegTrack, a novel foundation model that jointly addresses polyp detection, segmentation, classification and unsupervised tracking in colonoscopic videos. Our approach leverages a novel conditional mask loss, enabling flexible training across datasets with either pixel-level segmentation masks or bounding box annotations, allowing us to bypass task-specific fine-tuning. Our unsupervised tracking module reliably associates polyp instances across frames using object queries, without relying on any heuristics. We leverage a robust vision foundation model backbone that is pre-trained unsupervisedly on natural images, thereby removing the need for domain-specific pre-training. Extensive experiments on multiple polyp benchmarks demonstrate that our method significantly outperforms existing state-of-the-art approaches in detection, segmentation, classification, and tracking.
Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks
Jia, Yuang, Shan, Xiaojuan, Xia, Jun, Wan, Guancheng, Zhang, Yuchen, Huang, Wenke, Ye, Mang, Li, Stan Z.
Data-free Knowledge Distillation (DFKD) is a method that constructs pseudo-samples using a generator without real data, and transfers knowledge from a teacher model to a student by enforcing the student to overcome dimensional differences and learn to mimic the teacher's outputs on these pseudo-samples. In recent years, various studies in the vision domain have made notable advancements in this area. However, the varying topological structures and non-grid nature of graph data render the methods from the vision domain ineffective. Building upon prior research into differentiable methods for graph neural networks, we propose a fast and high-quality data-free knowledge distillation approach in this paper. Without compromising distillation quality, the proposed graph-free KD method (ACGKD) significantly reduces the spatial complexity of pseudo-graphs by leveraging the Binary Concrete distribution to model the graph structure and introducing a spatial complexity tuning parameter. This approach enables efficient gradient computation for the graph structure, thereby accelerating the overall distillation process. Additionally, ACGKD eliminates the dimensional ambiguity between the student and teacher models by increasing the student's dimensions and reusing the teacher's classifier. Moreover, it equips graph knowledge distillation with a CL-based strategy to ensure the student learns graph structures progressively. Extensive experiments demonstrate that ACGKD achieves state-of-the-art performance in distilling knowledge from GNNs without training data.
Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources
Wang, Weizhi, Tian, Yu, Yang, Linjie, Wang, Heng, Yan, Xifeng
The reproduction of state-of-the-art multimodal LLM pre-training faces barriers at every stage of the pipeline, including high-quality data filtering, multimodal data mixture strategies, sequence packing techniques, and training frameworks. We introduce Open-Qwen2VL, a fully open-source 2B-parameter Multimodal Large Language Model pre-trained efficiently on 29M image-text pairs using only 220 A100-40G GPU hours. Our approach employs low-to-high dynamic image resolution and multimodal sequence packing to significantly enhance pre-training efficiency. The training dataset was carefully curated using both MLLM-based filtering techniques (e.g., MLM-Filter) and conventional CLIP-based filtering methods, substantially improving data quality and training efficiency. The Open-Qwen2VL pre-training is conducted on academic level 8xA100-40G GPUs at UCSB on 5B packed multimodal tokens, which is 0.36% of 1.4T multimodal pre-training tokens of Qwen2-VL. The final instruction-tuned Open-Qwen2VL outperforms partially-open state-of-the-art MLLM Qwen2-VL-2B on various multimodal benchmarks of MMBench, SEEDBench, MMstar, and MathVista, indicating the remarkable training efficiency of Open-Qwen2VL. We open-source all aspects of our work, including compute-efficient and data-efficient training details, data filtering methods, sequence packing scripts, pre-training data in WebDataset format, FSDP-based training codebase, and both base and instruction-tuned model checkpoints. We redefine "fully open" for multimodal LLMs as the complete release of: 1) the training codebase, 2) detailed data filtering techniques, and 3) all pre-training and supervised fine-tuning data used to develop the model.
SRLCG: Self-Rectified Large-Scale Code Generation with Multidimensional Chain-of-Thought and Dynamic Backtracking
Ma, Hongru, Liang, Yanjie, Si, Jiasheng, Zhang, Weiyu, Guan, Hongjiao, Zheng, Chaoqun, Xu, Bing, Lu, Wenpeng
Large language models (LLMs) have revolutionized code generation, significantly enhancing developer productivity. However, for a vast number of users with minimal coding knowledge, LLMs provide little support, as they primarily generate isolated code snippets rather than complete, large-scale project code. Without coding expertise, these users struggle to interpret, modify, and iteratively refine the outputs of LLMs, making it impossible to assemble a complete project. To address this issue, we propose Self-Rectified Large-Scale Code Generator (SRLCG), a framework that generates complete multi-file project code from a single prompt. SRLCG employs a novel multidimensional chain-of-thought (CoT) and self-rectification to guide LLMs in generating correct and robust code files, then integrates them into a complete and coherent project using our proposed dynamic backtracking algorithm. Experimental results show that SRLCG generates code 15x longer than DeepSeek-V3, 16x longer than GPT-4, and at least 10x longer than other leading CoT-based baselines. Furthermore, they confirm its improved correctness, robustness, and performance compared to baselines in large-scale code generation.
Agent S2: A Compositional Generalist-Specialist Framework for Computer Use Agents
Agashe, Saaket, Wong, Kyle, Tu, Vincent, Yang, Jiachen, Li, Ang, Wang, Xin Eric
Computer use agents automate digital tasks by directly interacting with graphical user interfaces (GUIs) on computers and mobile devices, offering significant potential to enhance human productivity by completing an open-ended space of user queries. However, current agents face significant challenges: imprecise grounding of GUI elements, difficulties with long-horizon task planning, and performance bottlenecks from relying on single generalist models for diverse cognitive tasks. To this end, we introduce Agent S2, a novel compositional framework that delegates cognitive responsibilities across various generalist and specialist models. We propose a novel Mixture-of-Grounding technique to achieve precise GUI localization and introduce Proactive Hierarchical Planning, dynamically refining action plans at multiple temporal scales in response to evolving observations. Evaluations demonstrate that Agent S2 establishes new state-of-the-art (SOTA) performance on three prominent computer use benchmarks. Specifically, Agent S2 achieves 18.9% and 32.7% relative improvements over leading baseline agents such as Claude Computer Use and UI-TARS on the OSWorld 15-step and 50-step evaluation. Moreover, Agent S2 generalizes effectively to other operating systems and applications, surpassing previous best methods by 52.8% on WindowsAgentArena and by 16.52% on AndroidWorld relatively. Code available at https://github.com/simular-ai/Agent-S.
Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.