arXiv.org Artificial Intelligence
Bayesian approach to rough set
Marwala, Tshilidzi, Crossingham, Bodie
This paper proposes an approach to training rough set models using Bayesian framework trained using Markov Chain Monte Carlo (MCMC) method. The prior probabilities are constructed from the prior knowledge that good rough set models have fewer rules. Markov Chain Monte Carlo sampling is conducted through sampling in the rough set granule space and Metropolis algorithm is used as an acceptance criteria. The proposed method is tested to estimate the risk of HIV given demographic data. The results obtained shows that the proposed approach is able to achieve an average accuracy of 58% with the accuracy varying up to 66%. In addition the Bayesian rough set give the probabilities of the estimated HIV status as well as the linguistic rules describing how the demographic parameters drive the risk of HIV.
Direct Optimization of Ranking Measures
Web page ranking and collaborative filtering require the optimization of sophisticated performance measures. Current Support Vector approaches are unable to optimize them directly and focus on pairwise comparisons instead. We present a new approach which allows direct optimization of the relevant loss functions. This is achieved via structured estimation in Hilbert spaces. It is most related to Max-Margin-Markov networks optimization of multivariate performance measures. Key to our approach is that during training the ranking problem can be viewed as a linear assignment problem, which can be solved by the Hungarian Marriage algorithm. At test time, a sort operation is sufficient, as our algorithm assigns a relevance score to every (document, query) pair. Experiments show that the our algorithm is fast and that it works very well.
Experimenting with recursive queries in database and logic programming systems
Terracina, Giorgio, Leone, Nicola, Lio, Vincenzino, Panetta, Claudio
This paper considers the problem of reasoning on massive amounts of (possibly distributed) data. Presently, existing proposals show some limitations: {\em (i)} the quantity of data that can be handled contemporarily is limited, due to the fact that reasoning is generally carried out in main-memory; {\em (ii)} the interaction with external (and independent) DBMSs is not trivial and, in several cases, not allowed at all; {\em (iii)} the efficiency of present implementations is still not sufficient for their utilization in complex reasoning tasks involving massive amounts of data. This paper provides a contribution in this setting; it presents a new system, called DLV$^{DB}$, which aims to solve these problems. Moreover, the paper reports the results of a thorough experimental analysis we have carried out for comparing our system with several state-of-the-art systems (both logic and databases) on some classical deductive problems; the other tested systems are: LDL++, XSB, Smodels and three top-level commercial DBMSs. DLV$^{DB}$ significantly outperforms even the commercial Database Systems on recursive queries. To appear in Theory and Practice of Logic Programming (TPLP)
Arabic Speech Recognition System using CMU-Sphinx4
Satori, H., Harti, M., Chenfour, N.
In this paper we present the creation of an Arabic version of Automated Speech Recognition System (ASR). This system is based on the open source Sphinx-4, from the Carnegie Mellon University. Which is a speech recognition system based on discrete hidden Markov models (HMMs). We investigate the changes that must be made to the model to adapt Arabic voice recognition. Keywords: Speech recognition, Acoustic model, Arabic language, HMMs, CMUSphinx-4, Artificial intelligence.
Introduction to Arabic Speech Recognition Using CMUSphinx System
Satori, H., Harti, M., Chenfour, N.
In this paper Arabic was investigated from the speech recognition problem point of view. We propose a novel approach to build an Arabic Automated Speech Recognition System (ASR). This system is based on the open source CMU Sphinx-4, from the Carnegie Mellon University. CMU Sphinx is a large-vocabulary; speaker-independent, continuous speech recognition system based on discrete Hidden Markov Models (HMMs). We build a model using utilities from the OpenSource CMU Sphinx. We will demonstrate the possible adaptability of this system to Arabic voice recognition.
Personalizing Image Search Results on Flickr
Lerman, Kristina, Plangprasopchok, Anon, Wong, Chio
The social media site Flickr allows users to upload their photos, annotate them with tags, submit them to groups, and also to form social networks by adding other users as contacts. Flickr offers multiple ways of browsing or searching it. One option is tag search, which returns all images tagged with a specific keyword. If the keyword is ambiguous, e.g., ``beetle'' could mean an insect or a car, tag search results will include many images that are not relevant to the sense the user had in mind when executing the query. We claim that users express their photography interests through the metadata they add in the form of contacts and image annotations. We show how to exploit this metadata to personalize search results for the user, thereby improving search performance. First, we show that we can significantly improve search precision by filtering tag search results by user's contacts or a larger social network that includes those contact's contacts. Secondly, we describe a probabilistic model that takes advantage of tag information to discover latent topics contained in the search results. The users' interests can similarly be described by the tags they used for annotating their images. The latent topics found by the model are then used to personalize search results by finding images on topics that are of interest to the user.
Exploiting Social Annotation for Automatic Resource Discovery
Plangprasopchok, Anon, Lerman, Kristina
Information integration applications, such as mediators or mashups, that require access to information resources currently rely on users manually discovering and integrating them in the application. Manual resource discovery is a slow process, requiring the user to sift through results obtained via keyword-based search. Although search methods have advanced to include evidence from document contents, its metadata and the contents and link structure of the referring pages, they still do not adequately cover information sources -- often called ``the hidden Web''-- that dynamically generate documents in response to a query. The recently popular social bookmarking sites, which allow users to annotate and share metadata about various information sources, provide rich evidence for resource discovery. In this paper, we describe a probabilistic model of the user annotation process in a social bookmarking system del.icio.us. We then use the model to automatically find resources relevant to a particular information domain. Our experimental results on data obtained from \emph{del.icio.us} show this approach as a promising method for helping automate the resource discovery task.
A neural network approach to ordinal regression
Ordinal regression is an important type of learning, which has properties of both classification and regression. Here we describe a simple and effective approach to adapt a traditional neural network to learn ordinal categories. Our approach is a generalization of the perceptron method for ordinal regression. On several benchmark datasets, our method (NNRank) outperforms a neural network classification method. Compared with the ordinal regression methods using Gaussian processes and support vector machines, NNRank achieves comparable performance. Moreover, NNRank has the advantages of traditional neural networks: learning in both online and batch modes, handling very large training datasets, and making rapid predictions. These features make NNRank a useful and complementary tool for large-scale data processing tasks such as information retrieval, web page ranking, collaborative filtering, and protein ranking in Bioinformatics.
Architecture for Pseudo Acausal Evolvable Embedded Systems
Advances in semiconductor technology are contributing to the increasing complexity in the design of embedded systems. Architectures with novel techniques such as evolvable nature and autonomous behavior have engrossed lot of attention. This paper demonstrates conceptually evolvable embedded systems can be characterized basing on acausal nature. It is noted that in acausal systems, future input needs to be known, here we make a mechanism such that the system predicts the future inputs and exhibits pseudo acausal nature. An embedded system that uses theoretical framework of acausality is proposed. Our method aims at a novel architecture that features the hardware evolability and autonomous behavior alongside pseudo acausality. Various aspects of this architecture are discussed in detail along with the limitations.