Plotting

 arXiv.org Artificial Intelligence


Low-Resource Transliteration for Roman-Urdu and Urdu Using Transformer-Based Models

arXiv.org Artificial Intelligence

As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. Transliteration between Urdu and its Romanized form, Roman Urdu, remains underexplored despite the widespread use of both scripts in South Asia. Prior work using RNNs on the Roman-Urdu-Parl dataset showed promising results but suffered from poor domain adaptability and limited evaluation. We propose a transformer-based approach using the m2m100 multilingual translation model, enhanced with masked language modeling (MLM) pretraining and fine-tuning on both Roman-Urdu-Parl and the domain-diverse Dakshina dataset. To address previous evaluation flaws, we introduce rigorous dataset splits and assess performance using BLEU, character-level BLEU, and CHRF. Our model achieves strong transliteration performance, with Char-BLEU scores of 96.37 for Urdu->Roman-Urdu and 97.44 for Roman-Urdu->Urdu. These results outperform both RNN baselines and GPT-4o Mini and demonstrate the effectiveness of multilingual transfer learning for low-resource transliteration tasks.


ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models

arXiv.org Artificial Intelligence

Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit


No Free Lunch with Guardrails

arXiv.org Artificial Intelligence

As large language models (LLMs) and generative AI become widely adopted, guardrails have emerged as a key tool to ensure their safe use. However, adding guardrails isn't without tradeoffs; stronger security measures can reduce usability, while more flexible systems may leave gaps for adversarial attacks. In this work, we explore whether current guardrails effectively prevent misuse while maintaining practical utility. We introduce a framework to evaluate these tradeoffs, measuring how different guardrails balance risk, security, and usability, and build an efficient guardrail. Our findings confirm that there is no free lunch with guardrails; strengthening security often comes at the cost of usability. To address this, we propose a blueprint for designing better guardrails that minimize risk while maintaining usability. We evaluate various industry guardrails, including Azure Content Safety, Bedrock Guardrails, OpenAI's Moderation API, Guardrails AI, Nemo Guardrails, and Enkrypt AI guardrails. Additionally, we assess how LLMs like GPT-4o, Gemini 2.0-Flash, Claude 3.5-Sonnet, and Mistral Large-Latest respond under different system prompts, including simple prompts, detailed prompts, and detailed prompts with chain-of-thought (CoT) reasoning. Our study provides a clear comparison of how different guardrails perform, highlighting the challenges in balancing security and usability.


Scaling Laws in Scientific Discovery with AI and Robot Scientists

arXiv.org Artificial Intelligence

Scientific discovery is poised for rapid advancement through advanced robotics and artificial intelligence. Current scientific practices face substantial limitations as manual experimentation remains time-consuming and resource-intensive, while multidisciplinary research demands knowledge integration beyond individual researchers' expertise boundaries. Here, we envision an autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle. This system could dynamically interact with both physical and virtual environments while facilitating the integration of knowledge across diverse scientific disciplines. By deploying these technologies throughout every research stage -- spanning literature review, hypothesis generation, experimentation, and manuscript writing -- and incorporating internal reflection alongside external feedback, this system aims to significantly reduce the time and resources needed for scientific discovery. Building on the evolution from virtual AI scientists to versatile generalist AI-based robot scientists, AGS promises groundbreaking potential. As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws, potentially shaped by the number and capabilities of these autonomous systems, offering novel perspectives on how knowledge is generated and evolves. The adaptability of embodied robots to extreme environments, paired with the flywheel effect of accumulating scientific knowledge, holds the promise of continually pushing beyond both physical and intellectual frontiers.


Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models

arXiv.org Artificial Intelligence

State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms several state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.


Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery

arXiv.org Artificial Intelligence

The DeepSeek models have shown exceptional performance in general scene understanding, question-answering (QA), and text generation tasks, owing to their efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our empirical study shows that, compared to existing general-purpose multimodal large language models, DeepSeek-VL2 performs better on complex understanding tasks in surgical scenes. Additionally, although DeepSeek-V3 is purely a language model, we find that when image tokens are directly inputted, the model demonstrates better performance on single-sentence QA tasks. However, overall, the DeepSeek models still fall short of meeting the clinical requirements for understanding surgical scenes. Under general prompts, DeepSeek models lack the ability to effectively analyze global surgical concepts and fail to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek models are not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.


Geometric Median Matching for Robust k-Subset Selection from Noisy Data

arXiv.org Artificial Intelligence

Data pruning -- the combinatorial task of selecting a small and representative subset from a large dataset, is crucial for mitigating the enormous computational costs associated with training data-hungry modern deep learning models at scale. Since large scale data collections are invariably noisy, developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. However, existing data pruning methods often fail under high corruption rates due to their reliance on empirical mean estimation, which is highly sensitive to outliers. In response, we propose Geometric Median (GM) Matching, a novel k-subset selection strategy that leverages Geometric Median -- a robust estimator with an optimal breakdown point of 1/2; to enhance resilience against noisy data. Our method iteratively selects a k-subset such that the mean of the subset approximates the GM of the (potentially) noisy dataset, ensuring robustness even under arbitrary corruption. We provide theoretical guarantees, showing that GM Matching enjoys an improved O(1/k) convergence rate -- a quadratic improvement over random sampling, even under arbitrary corruption. Extensive experiments across image classification and image generation tasks demonstrate that GM Matching consistently outperforms existing pruning approaches, particularly in high-corruption settings and at high pruning rates; making it a strong baseline for robust data pruning.


Quantum Generative Models for Image Generation: Insights from MNIST and MedMNIST

arXiv.org Artificial Intelligence

Quantum generative models offer a promising new direction in machine learning by leveraging quantum circuits to enhance data generation capabilities. In this study, we propose a hybrid quantum-classical image generation framework that integrates variational quantum circuits into a diffusion-based model. To improve training dynamics and generation quality, we introduce two novel noise strategies: intrinsic quantum-generated noise and a tailored noise scheduling mechanism. Our method is built upon a lightweight U-Net architecture, with the quantum layer embedded in the bottleneck module to isolate its effect. We evaluate our model on MNIST and MedMNIST datasets to examine its feasibility and performance. Notably, our results reveal that under limited data conditions (fewer than 100 training images), the quantum-enhanced model generates images with higher perceptual quality and distributional similarity than its classical counterpart using the same architecture. While the quantum model shows advantages on grayscale data such as MNIST, its performance is more nuanced on complex, color-rich datasets like PathMNIST. These findings highlight both the potential and current limitations of quantum generative models and lay the groundwork for future developments in low-resource and biomedical image generation.


VinaBench: Benchmark for Faithful and Consistent Visual Narratives

arXiv.org Artificial Intelligence

Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.


Bootstrapped Model Predictive Control

arXiv.org Artificial Intelligence

Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.