Plotting

 arXiv.org Artificial Intelligence


Automatic Pattern Classification by Unsupervised Learning Using Dimensionality Reduction of Data with Mirroring Neural Networks

arXiv.org Artificial Intelligence

This paper proposes an unsupervised learning technique by using Multi-layer Mirroring Neural Network and Forgy's clustering algorithm. Multi-layer Mirroring Neural Network is a neural network that can be trained with generalized data inputs (different categories of image patterns) to perform non-linear dimensionality reduction and the resultant low-dimensional code is used for unsupervised pattern classification using Forgy's algorithm. By adapting the non-linear activation function (modified sigmoidal function) and initializing the weights and bias terms to small random values, mirroring of the input pattern is initiated. In training, the weights and bias terms are changed in such a way that the input presented is reproduced at the output by back propagating the error. The mirroring neural network is capable of reducing the input vector to a great degree (approximately 1/30th the original size) and also able to reconstruct the input pattern at the output layer from this reduced code units. The feature set (output of central hidden layer) extracted from this network is fed to Forgy's algorithm, which classify input data patterns into distinguishable classes. In the implementation of Forgy's algorithm, initial seed points are selected in such a way that they are distant enough to be perfectly grouped into different categories. Thus a new method of unsupervised learning is formulated and demonstrated in this paper. This method gave impressive results when applied to classification of different image patterns.


A Common View on Strong, Uniform, and Other Notions of Equivalence in Answer-Set Programming

arXiv.org Artificial Intelligence

Logic programming under the answer-set semantics nowadays deals with numerous different notions of program equivalence. This is due to the fact that equivalence for substitution (known as strong equivalence) and ordinary equivalence are different concepts. The former holds, given programs P and Q, iff P can be faithfully replaced by Q within any context R, while the latter holds iff P and Q provide the same output, that is, they have the same answer sets. Notions in between strong and ordinary equivalence have been introduced as theoretical tools to compare incomplete programs and are defined by either restricting the syntactic structure of the considered context programs R or by bounding the set A of atoms allowed to occur in R (relativized equivalence).For the latter approach, different A yield properly different equivalence notions, in general. For the former approach, however, it turned out that any ``reasonable'' syntactic restriction to R coincides with either ordinary, strong, or uniform equivalence. In this paper, we propose a parameterization for equivalence notions which takes care of both such kinds of restrictions simultaneously by bounding, on the one hand, the atoms which are allowed to occur in the rule heads of the context and, on the other hand, the atoms which are allowed to occur in the rule bodies of the context. We introduce a general semantical characterization which includes known ones as SE-models (for strong equivalence) or UE-models (for uniform equivalence) as special cases. Moreover,we provide complexity bounds for the problem in question and sketch a possible implementation method. To appear in Theory and Practice of Logic Programming (TPLP).


Evolving localizations in reaction-diffusion cellular automata

arXiv.org Artificial Intelligence

We consider hexagonal cellular automata with immediate cell neighbourhood and three cell-states. Every cell calculates its next state depending on the integral representation of states in its neighbourhood, i.e. how many neighbours are in each one state. We employ evolutionary algorithms to breed local transition functions that support mobile localizations (gliders), and characterize sets of the functions selected in terms of quasi-chemical systems. Analysis of the set of functions evolved allows to speculate that mobile localizations are likely to emerge in the quasi-chemical systems with limited diffusion of one reagent, a small number of molecules is required for amplification of travelling localizations, and reactions leading to stationary localizations involve relatively equal amount of quasi-chemical species. Techniques developed can be applied in cascading signals in nature-inspired spatially extended computing devices, and phenomenological studies and classification of non-linear discrete systems.


Computational Chemotaxis in Ants and Bacteria over Dynamic Environments

arXiv.org Artificial Intelligence

Chemotaxis can be defined as an innate behavioural response by an organism to a directional stimulus, in which bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food (e.g., glucose) by swimming towards the highest concentration of food molecules, or to flee from poisons. Based on self-organized computational approaches and similar stigmergic concepts we derive a novel swarm intelligent algorithm. What strikes from these observations is that both eusocial insects as ant colonies and bacteria have similar natural mechanisms based on stigmergy in order to emerge coherent and sophisticated patterns of global collective behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal complex functions described in the well-know De Jong test suite. Later, for the purpose of comparison, a recent model of artificial bacterial foraging (BFOA algorithm) based on similar stigmergic features is described and analyzed. Final results indicate that the SSA collective intelligence is able to cope and quickly adapt to unforeseen situations even when over the same cooperative foraging period, the community is requested to deal with two different and contradictory purposes, while outperforming BFOA in adaptive speed. Results indicate that the present approach deals well in severe Dynamic Optimization problems.


A Reactive Tabu Search Algorithm for Stimuli Generation in Psycholinguistics

arXiv.org Artificial Intelligence

The generation of meaningless "words" matching certain statistical and/or linguistic criteria is frequently needed for experimental purposes in Psycholinguistics. Such stimuli receive the name of pseudowords or nonwords in the Cognitive Neuroscience literatue. The process for building nonwords sometimes has to be based on linguistic units such as syllables or morphemes, resulting in a numerical explosion of combinations when the size of the nonwords is increased. In this paper, a reactive tabu search scheme is proposed to generate nonwords of variables size. The approach builds pseudowords by using a modified Metaheuristic algorithm based on a local search procedure enhanced by a feedback-based scheme. Experimental results show that the new algorithm is a practical and effective tool for nonword generation.


A Spectral Approach to Analyzing Belief Propagation for 3-Coloring

arXiv.org Artificial Intelligence

Contributing to the rigorous understanding of BP, in this paper we relate the convergence of BP to spectral properties of the graph. This encompasses a result for random graphs with a ``planted'' solution; thus, we obtain the first rigorous result on BP for graph coloring in the case of a complex graphical structure (as opposed to trees). In particular, the analysis shows how Belief Propagation breaks the symmetry between the $3!$ possible permutations of the color classes.


Knowware: the third star after Hardware and Software

arXiv.org Artificial Intelligence

This book proposes to separate knowledge from software and to make it a commodity that is called knowware. The architecture, representation and function of Knowware are discussed. The principles of knowware engineering and its three life cycle models: furnace model, crystallization model and spiral model are proposed and analyzed. Techniques of software/knowware co-engineering are introduced. A software component whose knowledge is replaced by knowware is called mixware. An object and component oriented development schema of mixware is introduced. In particular, the tower model and ladder model for mixware development are proposed and discussed. Finally, knowledge service and knowware based Web service are introduced and compared with Web service. In summary, knowware, software and hardware should be considered as three equally important underpinnings of IT industry. Ruqian Lu is a professor of computer science of the Institute of Mathematics, Academy of Mathematics and System Sciences. He is a fellow of Chinese Academy of Sciences. His research interests include artificial intelligence, knowledge engineering and knowledge based software engineering. He has published more than 100 papers and 10 books. He has won two first class awards from the Academia Sinica and a National second class prize from the Ministry of Science and Technology. He has also won the sixth Hua Loo-keng Mathematics Prize.


Translating OWL and Semantic Web Rules into Prolog: Moving Toward Description Logic Programs

arXiv.org Artificial Intelligence

To appear in Theory and Practice of Logic Programming (TPLP), 2008. We are researching the interaction between the rule and the ontology layers of the Semantic Web, by comparing two options: 1) using OWL and its rule extension SWRL to develop an integrated ontology/rule language, and 2) layering rules on top of an ontology with RuleML and OWL. Toward this end, we are developing the SWORIER system, which enables efficient automated reasoning on ontologies and rules, by translating all of them into Prolog and adding a set of general rules that properly capture the semantics of OWL. We have also enabled the user to make dynamic changes on the fly, at run time. This work addresses several of the concerns expressed in previous work, such as negation, complementary classes, disjunctive heads, and cardinality, and it discusses alternative approaches for dealing with inconsistencies in the knowledge base. In addition, for efficiency, we implemented techniques called extensionalization, avoiding reanalysis, and code minimization.


A Game-Theoretic Analysis of Updating Sets of Probabilities

arXiv.org Artificial Intelligence

We consider how an agent should update her uncertainty when it is represented by a set $\P$ of probability distributions and the agent observes that a random variable $X$ takes on value $x$, given that the agent makes decisions using the minimax criterion, perhaps the best-studied and most commonly-used criterion in the literature. We adopt a game-theoretic framework, where the agent plays against a bookie, who chooses some distribution from $\P$. We consider two reasonable games that differ in what the bookie knows when he makes his choice. Anomalies that have been observed before, like time inconsistency, can be understood as arising important because different games are being played, against bookies with different information. We characterize the important special cases in which the optimal decision rules according to the minimax criterion amount to either conditioning or simply ignoring the information. Finally, we consider the relationship between conditioning and calibration when uncertainty is described by sets of probabilities.


How to realize "a sense of humour" in computers ?

arXiv.org Artificial Intelligence

Computer model of a "sense of humour" suggested previously [arXiv:0711.2058, 0711.2061, 0711.2270] is raised to the level of a realistic algorithm.