Not enough data to create a plot.
Try a different view from the menu above.
arXiv.org Artificial Intelligence
Distortion Bounds of Subdivision Models for SO(3)
In the subdivision approach to robot path planning, we need to subdivide the configuration space of a robot into nice cells to perform various computations. For a rigid spatial robot, this configuration space is $SE(3)=\mathbb{R}^3\times SO(3)$. The subdivision of $\mathbb{R}^3$ is standard but so far, there are no global subdivision schemes for $SO(3)$. We recently introduced a representation for $SO(3)$ suitable for subdivision. This paper investigates the distortion of the natural metric on $SO(3)$ caused by our representation. The proper framework for this study lies in the Riemannian geometry of $SO(3)$, enabling us to obtain sharp distortion bounds.
New Intent Discovery with Pre-training and Contrastive Learning
Zhang, Yuwei, Zhang, Haode, Zhan, Li-Ming, Lam, Albert Y. S., Wu, Xiao-Ming
New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes. It is a critical task for the development and service expansion of a practical dialogue system. Despite its importance, this problem remains under-explored in the literature. Existing approaches typically rely on a large amount of labeled utterances and employ pseudo-labeling methods for representation learning and clustering, which are label-intensive, inefficient, and inaccurate. In this paper, we provide new solutions to two important research questions for new intent discovery: (1) how to learn semantic utterance representations and (2) how to better cluster utterances. Particularly, we first propose a multi-task pre-training strategy to leverage rich unlabeled data along with external labeled data for representation learning. Then, we design a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering. Extensive experiments on three intent recognition benchmarks demonstrate the high effectiveness of our proposed method, which outperforms state-of-the-art methods by a large margin in both unsupervised and semi-supervised scenarios. The source code will be available at https://github.com/zhang-yu-wei/MTP-CLNN.
Deep Neural Nets as Hamiltonians
Neural networks are complex functions of both their inputs and parameters. Much prior work in deep learning theory analyzes the distribution of network outputs at a fixed a set of inputs (e.g. a training dataset) over random initializations of the network parameters. The purpose of this article is to consider the opposite situation: we view a randomly initialized Multi-Layer Perceptron (MLP) as a Hamiltonian over its inputs. For typical realizations of the network parameters, we study the properties of the energy landscape induced by this Hamiltonian, focusing on the structure of near-global minimum in the limit of infinite width. Specifically, we use the replica trick to perform an exact analytic calculation giving the entropy (log volume of space) at a given energy. We further derive saddle point equations that describe the overlaps between inputs sampled iid from the Gibbs distribution induced by the random MLP. For linear activations we solve these saddle point equations exactly. But we also solve them numerically for a variety of depths and activation functions, including $\tanh, \sin, \text{ReLU}$, and shaped non-linearities. We find even at infinite width a rich range of behaviors. For some non-linearities, such as $\sin$, for instance, we find that the landscapes of random MLPs exhibit full replica symmetry breaking, while shallow $\tanh$ and ReLU networks or deep shaped MLPs are instead replica symmetric.
Opioid Named Entity Recognition (ONER-2025) from Reddit
Ahmad, Muhammad, Farid, Humaira, Ameer, Iqra, Amjad, Maaz, Muzamil, Muhammad, Hamza, Ameer, Jalal, Muhammad, Batyrshin, Ildar, Sidorov, Grigori
The opioid overdose epidemic remains a critical public health crisis, particularly in the United States, leading to significant mortality and societal costs. Social media platforms like Reddit provide vast amounts of unstructured data that offer insights into public perceptions, discussions, and experiences related to opioid use. This study leverages Natural Language Processing (NLP), specifically Opioid Named Entity Recognition (ONER-2025), to extract actionable information from these platforms. Our research makes four key contributions. First, we created a unique, manually annotated dataset sourced from Reddit, where users share self-reported experiences of opioid use via different administration routes. This dataset contains 331,285 tokens and includes eight major opioid entity categories. Second, we detail our annotation process and guidelines while discussing the challenges of labeling the ONER-2025 dataset. Third, we analyze key linguistic challenges, including slang, ambiguity, fragmented sentences, and emotionally charged language, in opioid discussions. Fourth, we propose a real-time monitoring system to process streaming data from social media, healthcare records, and emergency services to identify overdose events. Using 5-fold cross-validation in 11 experiments, our system integrates machine learning, deep learning, and transformer-based language models with advanced contextual embeddings to enhance understanding. Our transformer-based models (bert-base-NER and roberta-base) achieved 97% accuracy and F1-score, outperforming baselines by 10.23% (RF=0.88).
Imbalanced malware classification: an approach based on dynamic classifier selection
Souza, J. V. S., Vieira, C. B., Cavalcanti, G. D. C., Cruz, R. M. O.
In recent years, the rise of cyber threats has emphasized the need for robust malware detection systems, especially on mobile devices. Malware, which targets vulnerabilities in devices and user data, represents a substantial security risk. A significant challenge in malware detection is the imbalance in datasets, where most applications are benign, with only a small fraction posing a threat. This study addresses the often-overlooked issue of class imbalance in malware detection by evaluating various machine learning strategies for detecting malware in Android applications. We assess monolithic classifiers and ensemble methods, focusing on dynamic selection algorithms, which have shown superior performance compared to traditional approaches. In contrast to balancing strategies performed on the whole dataset, we propose a balancing procedure that works individually for each classifier in the pool. Our empirical analysis demonstrates that the KNOP algorithm obtained the best results using a pool of Random Forest. Additionally, an instance hardness assessment revealed that balancing reduces the difficulty of the minority class and enhances the detection of the minority class (malware). The code used for the experiments is available at https://github.com/jvss2/Machine-Learning-Empirical-Evaluation.
GenPRM: Scaling Test-Time Compute of Process Reward Models via Generative Reasoning
Zhao, Jian, Liu, Runze, Zhang, Kaiyan, Zhou, Zhimu, Gao, Junqi, Li, Dong, Lyu, Jiafei, Qian, Zhouyi, Qi, Biqing, Li, Xiu, Zhou, Bowen
Recent advancements in Large Language Models (LLMs) have shown that it is promising to utilize Process Reward Models (PRMs) as verifiers to enhance the performance of LLMs. However, current PRMs face three key challenges: (1) limited process supervision and generalization capabilities, (2) dependence on scalar value prediction without leveraging the generative abilities of LLMs, and (3) inability to scale the test-time compute of PRMs. In this work, we introduce GenPRM, a generative process reward model that performs explicit Chain-of-Thought (CoT) reasoning with code verification before providing judgment for each reasoning step. To obtain high-quality process supervision labels and rationale data, we propose Relative Progress Estimation (RPE) and a rationale synthesis framework that incorporates code verification. Experimental results on ProcessBench and several mathematical reasoning tasks show that GenPRM significantly outperforms prior PRMs with only 23K training data from MATH dataset. Through test-time scaling, a 1.5B GenPRM outperforms GPT-4o, and a 7B GenPRM surpasses Qwen2.5-Math-PRM-72B on ProcessBench. Additionally, GenPRM demonstrates strong abilities to serve as a critic model for policy model refinement. This work establishes a new paradigm for process supervision that bridges the gap between PRMs and critic models in LLMs. Our code, model, and data will be available in https://ryanliu112.github.io/GenPRM.
Data-driven construction of a generalized kinetic collision operator from molecular dynamics
Zhao, Yue, Burby, Joshua W., Christlieb, Andrew, Lei, Huan
We introduce a data-driven approach to learn a generalized kinetic collision operator directly from molecular dynamics. Unlike the conventional (e.g., Landau) models, the present operator takes an anisotropic form that accounts for a second energy transfer arising from the collective interactions between the pair of collision particles and the environment. Numerical results show that preserving the broadly overlooked anisotropic nature of the collision energy transfer is crucial for predicting the plasma kinetics with non-negligible correlations, where the Landau model shows limitations.
Predictive Traffic Rule Compliance using Reinforcement Learning
Huang, Yanliang, Mair, Sebastian, Zeng, Zhuoqi, Althoff, Matthias
--Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents an approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. Our main innovation is replacing the standard actor network in an actor-critic method with a motion planning module, which ensures both stable and interpretable trajectory generation. In this setup, we use traffic rule robustness as the reward to train a reinforcement learning agent's critic, and the output of the critic is directly used as the cost function of the motion planner, which guides the choices of the trajectory. We incorporate some key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, increasing safety and rule compliance in challenging traffic scenarios. HE field of autonomous driving has advanced substantially over the past five years. Although perception and prediction modules have become more reliable, planning systems still face challenges, particularly regarding safety assurance and operational robustness. Furthermore, traffic rule compliance remains a fundamental prerequisite for autonomous vehicles, both to protect road users and to satisfy legal certification standards. Recent research has effectively applied temporal logic to formalize traffic rules, enabling automated online monitoring systems [1]-[3] to continuously monitor the compliance of traffic rules. These approaches use the concept of rule robustness--a quantitative metric indicating how thoroughly specific traffic rules are satisfied or violated.
VLIPP: Towards Physically Plausible Video Generation with Vision and Language Informed Physical Prior
Yang, Xindi, Li, Baolu, Zhang, Yiming, Yin, Zhenfei, Bai, Lei, Ma, Liqian, Wang, Zhiyong, Cai, Jianfei, Wong, Tien-Tsin, Lu, Huchuan, Jia, Xu
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. T o address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics with vision and language informed physical prior . In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/
sudo rm -rf agentic_security
Lee, Sejin, Kim, Jian, Park, Haon, Yousefpour, Ashkan, Yu, Sangyoon, Song, Min
Large Language Models (LLMs) are increasingly deployed as computer-use agents, autonomously performing tasks within real desktop or web environments. While this evolution greatly expands practical use cases for humans, it also creates serious security exposures. We present SUDO (Screen-based Universal Detox2Tox Offense), a novel attack framework that systematically bypasses refusal trained safeguards in commercial computer-use agents, such as Claude Computer Use. The core mechanism, Detox2Tox, transforms harmful requests (that agents initially reject) into seemingly benign requests via detoxification, secures detailed instructions from advanced vision language models (VLMs), and then reintroduces malicious content via toxification just before execution. Unlike conventional jailbreaks, SUDO iteratively refines its attacks based on a built-in refusal feedback, making it increasingly effective against robust policy filters. In extensive tests spanning 50 real-world tasks and multiple state-of-the-art VLMs, SUDO achieves a stark attack success rate of 24% (with no refinement), and up to 41% (by its iterative refinement) in Claude Computer Use. By revealing these vulnerabilities and demonstrating the ease with which they can be exploited in real-world computing environments, this paper highlights an immediate need for robust, context-aware safeguards. WARNING: This paper includes harmful or offensive model outputs Our code is available at: https://github.com/AIM-Intelligence/SUDO.git