Goto

Collaborating Authors

 Yonsei University


Machine-Translated Knowledge Transfer for Commonsense Causal Reasoning

AAAI Conferences

This paper studies the problem of multilingual causal reasoning in resource-poor languages. Existing approaches, translating into the most probable resource-rich language such as English, suffer in the presence of translation and language gaps between different cultural area, which leads to the loss of causality. To overcome these challenges, our goal is thus to identify key techniques to construct a new causality network of cause-effect terms, targeted for the machine-translated English, but without any language-specific knowledge of resource-poor languages. In our evaluations with three languages, Korean, Chinese, and French, our proposed method consistently outperforms all baselines, achieving up-to 69.0% reasoning accuracy, which is close to the state-of-the-art accuracy 70.2% achieved on English.


Graph-Based Wrong IsA Relation Detection in a Large-Scale Lexical Taxonomy

AAAI Conferences

Knowledge base(KB) plays an important role in artificial intelligence. Much effort has been taken to both manually and automatically construct web-scale knowledge bases. Comparing with manually constructed KBs, automatically constructed KB is broader but with more noises. In this paper, we study the problem of improving the quality for automatically constructed web-scale knowledge bases, in particular, lexical taxonomies of isA relationships. We find that these taxonomies usually contain cycles, which are often introduced by incorrect isA relations. Inspired by this observation, we introduce two kinds of models to detect incorrect isA relations from cycles. The first one eliminates cycles by extracting directed acyclic graphs, and the other one eliminates cycles by grouping nodes into different levels. We implement our models on Probase, a state-of-the-art, automatically constructed, web-scale taxonomy. After processing tens of millions of relations, our models eliminate 74 thousand wrong relations with 91% accuracy.


Fine-Grained Semantic Conceptualization of FrameNet

AAAI Conferences

Understanding verbs is essential for many natural language tasks. Tothis end, large-scale lexical resources such as FrameNet have beenmanually constructed to annotate the semantics of verbs (frames) andtheir arguments (frame elements or FEs) in example sentences.Our goal is to "semantically conceptualize" example sentences by connectingFEs to knowledge base (KB) concepts.For example, connecting Employer FE to company concept in the KB enables the understanding thatany (unseen) company can also be FE examples.However, a naive adoption of existing KB conceptualization technique, focusingon scenarios of conceptualizing a few terms,cannot 1) scale to many FE instances (average of 29.7 instances for all FEs) and 2) leverage interdependence betweeninstances and concepts.We thus propose a scalable k-truss clusteringand a Markov Random Field (MRF) model leveraging interdependence betweenconcept-instance, concept-concept, and instance-instance pairs. Our extensive analysis with real-life data validates that our approachimproves not only the quality of the identified concepts for FrameNet, but alsothat of applications such as selectional preference.


Verb Pattern: A Probabilistic Semantic Representation on Verbs

AAAI Conferences

Verbs are important in semantic understanding of natural language. Traditional verb representations, such as FrameNet, PropBank, VerbNet, focus on verbs' roles. These roles are too coarse to represent verbs' semantics. In this paper, we introduce verb patterns to represent verbs' semantics, such that each pattern corresponds to a single semantic of the verb. First we analyze the principles for verb patterns: generality and specificity. Then we propose a nonparametric model based on description length. Experimental results prove the high effectiveness of verb patterns. We further apply verb patterns to context-aware conceptualization, to show that verb patterns are helpful in semantic-related tasks.