Goto

Collaborating Authors

 University of Sao Paulo


Algorithms for Deciding Counting Quantifiers over Unary Predicates

AAAI Conferences

We study algorithms for fragments of first order logic ex- tended with counting quantifiers, which are known to be highly complex in general. We propose a fragment over unary predicates that is NP-complete and for which there is a nor- mal form where Counting Quantification sentences have a single Unary predicate, thus call it the CQU fragment. We provide an algebraic formulation of the CQU satisfiability problem in terms of Integer Linear Programming based on which two algorithms are proposed, a direct reduction to SAT instances and an Integer Linear Programming version extended with a column generation mechanism. The latter is shown to lead to a viable implementation and experiments shows this algorithm presents a phase transition behavior.


Complexity of Inferences in Polytree-shaped Semi-Qualitative Probabilistic Networks

AAAI Conferences

Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the Bayesian networks.  This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that inferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is constructive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynomial-time algorithm for SQPNs. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.